
Theme: Phytoplankton and Macroalgae

63



64 • Handbook of Satellite Remote Sensing Image Interpretation: Marine Applications



Case Study 5

Observation of Ocean Colour Beyond Chlorophyll-a:
From Particulate Organic Carbon Content and Size
Distribution to Phytoplankton Functional Groups

Séverine Alvain∗1, Lucile Duforêt-Gaurier1 and Hubert Loisel1

5.1 Background Information

The term phytoplankton encompasses all microscopic plant-like organisms living in

the illuminated surface layers of the ocean. The existence of phytoplankton is of

fundamental interest as they form the base of the aquatic food web, providing an

essential ecological function for all aquatic life.

Phytoplankton also play an important role in the biological pump of carbon and

CO2 sequestration. During the process of photosynthesis, phytoplankton take up

dissolved CO2 and convert it into organic compounds, using energy from the sun.

This transformation is of biogeochemical importance for two reasons: firstly the

resulting organic carbon no longer participates in the equilibrium of the carbonate

system, thus increasing the ocean’s ability to dissolve carbon dioxide. Secondly, the

particulate organic carbon sinks from surface waters to deeper layers, removing

carbon from the surface layer. The biological pump thus plays a very important role

in the Earth’s carbon cycle, and the evolution of the biological pump will play a key

role in understanding climate change scenarios.

Like terrestrial plants, phytoplankton use pigment antennae to capture the

energy of photons. Among these phytoplankton pigments is chlorophyll-a, which is

used as an index of the phytoplankton biomass. Chlorophyll-a selectively modifies

the flux of photons that penetrate the ocean’s surface layer. It absorbs the red and

blue wavelengths and scatters the green ones. For this reason, the colour of the

ocean will range from blue-green to green depending on the type and density of

phytoplankton populations. Thus, by studying the colour of light reflected from the

oceans, in other words ocean colour, optical sensors can quantify the amount of

chlorophyll and other constituents.

1Université Lille Nord de France, LOG CNRS, ULCO, USTL, UMR8187, F-62930 Wimereux, France.
∗Email address: severine.alvain@univ-littoral.fr
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Visible and near-infrared passive radiometers onboard spacecraft provide useful

data at spatial and temporal scales unattainable by shipboard sampling. This was

fully demonstrated by the first satellite, CZCS, dedicated to the observation of ocean

colour. Since then, a number of advanced ocean-colour satellites have been launched.

In the past few years, inversion of ocean-colour satellite data has moved beyond

the estimation of chlorophyll-a concentration to include new parameters which

make it possible, for example, to determine the dominant phytoplankton species

in the surface waters, to get information about particle size distribution (Loisel

et al., 2006) and to retrieve information about other biogeochemical components

such as particulate organic carbon (POC), and coloured detrital matter (Stramski

et al., 1999; Loisel et al., 2002; Siegel et al., 2002). Consequently, information on

dominant phytoplankton groups can be superimposed on POC and size distribution

maps, allowing for a large range of new applications. Information obtained from

satellite observation is restricted to the near-surface layer. Indeed, the surface

oceanic layer that is remotely sensed in the visible part of the spectrum is the

first attenuation layer, generating 90% of the photons that form the upward flux

just beneath the surface (Gordon and McCluney, 1975). The thickness of this layer

typically varies from a few meters to about 60 meters, depending on the presence of

optically-significant constituents in the water and the wavelength considered (Smith

and Baker, 1978). Products derived from satellite data such as chlorophyll or POC

concentration are integrated over the first penetration depth.

5.2 Materials and Methods

5.2.1 POC Estimates from Space

In this section, we will present the Loisel et al. (2002) method used to estimate

the near-surface concentration of POC from satellite data (POCsurf). This method

consists of deriving POCsurf from the inherent optical properties, as presented in

Loisel et al. (2002). The natural variations of optically-significant substances in

seawater can be observed through the measurements of inherent optical properties

(IOPs). Among these IOPs, the total backscattering coefficient of seawater, bb, is not

sensitive to the dissolved material. The bbcoefficient can therefore be partitioned

into two components bb = bbp + bbw where bbw is the backscattering coefficient

of seawater (Morel and Prieur, 1977) and bbp is the backscattering coefficient of

particles. The bbp variability is governed (to the first order) by changes in the

abundance and (to the second order) composition of the particle assemblage.

Previous studies at regional (Stramski et al., 1999; Loisel et al., 2001) and global

scales (Loisel et al., 2002) have demonstrated the feasibility of estimating POC from

bbp. The robust relationship found between POC and bbp can be explained by the fact

that under non-bloom conditions, bbp is governed mainly by small-sized, non-living

particles (Stramski and Kiefer, 1991; Morel and Ahn, 1991), which represent the
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dominant contribution of POC in the open ocean (Koike et al., 1990). Note that

previous studies have shown a good correlation between in situ bbp and POC values

in different oceanic areas (Reynolds et al., 2001; Stramski et al., 2008).

In a remote-sensing context, the backscattering coefficient of seawater is not

measured directly, but is derived by the inversion of the natural light field reflected

back out of the ocean and detected by the satellite ocean-colour sensor. In this

study, bb(490) is retrieved from the remote-sensing reflectance at 443nm, 490nm

and 555nm, using the method developed by Loisel and Stramski (2000), and slightly

modified by Loisel and Poteau (2006).

Because coincident measurements of the particle backscattering coefficient and

POC are still very scarce, the parameterization of POCsurf is established as a function

of the particle scattering coefficient, bp, which is derived from bbp using the following

empirical relationship (Twardowski et al., 2001):

bbp(490)/bb(490) = 0.0096× [chl-a]−0.253 (5.1)

A simple linear relationship is used between POCsurf and bp (Claustre et al., 1999;

Loisel et al., 2001). Based on results of previous studies carried out in different

regions of the global ocean, a mean slope value of 400 mg m−2 is adopted (Claustre

et al., 1999; Loisel et al., 2002) with a null intercept as a first approximation.

Figure 5.1 displays the global maps of the POCsurf near-surface concentration

for the SeaWiFS period 1997-2008 during June and January. The global distribution

of POCsurf follows the major gyre systems and other large scale circulation features

of the ocean. Low surface POC concentrations are encountered in subtropical

gyres, where large scale downwelling is expected. For example in the South Pacific

gyre, POCsurf is less than 50 mg m−3. Elevated near-surface POC concentrations

in the range 100-200 mg m−3 are encountered at high and temperate latitudes

(e.g. Antarctic Circumpolar Current, sub-arctic gyres, temperate North Atlantic).

Compared to subtropical gyres, these areas are characterized by a high chlorophyll

concentration (by a factor of about ten, Figure 5.2) supported by inputs of nutrients

injected from below the euphotic layer by advection or vertical mixing, or from

terrestrial sources.

5.2.2 Spectral Dependency of Optical Backscattering by Marine Particles:
A Proxy of the Particle Size Distribution

Knowledge of the relative proportions of small- and large-sized particles in the

surface ocean is essential for understanding the ocean ecology and biogeochem-

istry, including particle dynamics and carbon cycling. This information may be

assessed qualitatively from satellite observations of ocean colour (see Figure 5.3).

Such capability is based on the estimation of spectral dependence of the particulate

backscattering coefficient, bbp, denoted γ, which is sensitive to particle size distribu-
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tion. The greater the value of (the steeper the slope), the more small particles are

present in the water column, relative to large particles (and vice versa).

The retrieval of γ from ocean-colour remote sensing observations is performed in

two steps. First, bbp(λ) is assessed at different visible wavelengths, λ, by an inverse

algorithm which uses the light field estimated from the total signal measured

at the top of the atmosphere and corrected for atmospheric effects (Loisel and

Stramski, 2000). Then, γ is calculated by linear regression between Log (bbp) and

Log (λ). In general, the γ values are much greater in summer than in winter, which

holds true for both the northern and southern hemisphere (Figure 5.3). Seasonal

variations of indicate that the proportion of small-sized particles compared to larger

particles increases from winter to summer in the surface waters of the global oceans.

These spatio-temporal patterns are interpreted in terms of processes that modify

the composition of particulate assemblages and physiology of phytoplankton in

response to environmental forcing.

5.2.3 Detection of Dominant Phytoplankton Groups: The PHYSAT Method

Phytoplankton play an important role in many global biogeochemical cycles. How-

ever, the efficiency and impact of phytoplankton depends strongly on the nature

of phytoplankton itself. Thus monitoring the spatial and temporal distribution of

dominant phytoplankton groups is of critical importance. From a pigment point

of view, the main phytoplankton groups have specific pigments, called biomarkers.

The PHYSAT algorithm (Alvain et al., 2005; Alvain et al., 2008) has been developed

based on an empirical relationship between coincident in situ biomarker pigment

measurements and remote sensing reflectance anomalies. The PHYSAT method has

been applied to the SeaWiFS satellite archive, from September 1997 to December

2008. Monthly PHYSAT data have been used to retrieve the monthly climatology

maps for January and June, shown in Figure 5.4.

The main difficulty in ocean-colour measurements (in the visible spectrum) is

caused by the atmosphere and aerosols which act to diffuse and absorb light. The

atmosphere is responsible for about 95% of the signal detected by a satellite sensor.

However, the portion of the signal that carries information from the ocean and

the atmosphere respectively can be deconvoluted. This is currently done using

atmospheric correction algorithms. The measurements we used here are obtained

after atmospheric correction. However, since we used second order variability for the

PHYSAT method, some additional criteria have to be applied. Thus, we will consider,

for the PHYSAT part, only pixels associated with an aerosol optical thickness less

than 0.15. Another validity criteria concerns the concentration of chlorophyll-a, [chl-

a], which has to be lower than 3 mg m−3 to exclude waters possibly contaminated by

coastal material, and higher than 0.04 mg m−3 to discard ultra-oligotrophic waters

where it is unlikely that a dominant group can be found using ocean-colour data.
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Figure 5.1 Particulate organic carbon (POC) climatology maps (1997 – 2008,
SeaWiFS) for the months of June and January.
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Figure 5.2 Mean chlorophyll-a concentration climatology maps (1997 – 2008,
SeaWiFS) for the months of June and January.
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Figure 5.3 Particle size distribution proxy (γ) climatology maps (1997-2008,
SeaWiFS) for the months of June and January.
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Figure 5.4 Climatology maps (1997 – 2008, SeaWiFS) of dominant phytoplank-
ton groups for the months of June and January, estimated using PHYSAT. Nano.
= nanophytoplankton, Prochl. = Prochlorococcus, SLC = Synechococcus-like
cyanobacteria (SLC), and Phaeo. = Phaeocystis.
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The PHYSAT approach is based on the identification of specific signatures in

the nLw spectra classically measured by ocean-colour sensors, after the previous

criteria concerning atmospheric correction and [chl-a] has been applied. PHYSAT

is an empirical method, established by comparing two kinds of simultaneous and

coincident measurements: SeaWiFS nLw measurements and in situ measurements

of biomarker phytoplankton pigments performed in the framework of the Gep&Co

program (Dandonneau et al., 2004). In a first study, four dominant phytoplankton

groups were identified within the GeP&CO dataset: diatoms, nanoeukaryotes, Syne-

chococcus and Prochlorococcus. Recently, the PHYSAT method has been improved to

detect an additional group, namely the Phaeocystis-like group, by analyzing specific

signal anomalies in the Southern Ocean during winter months (Alvain et al., 2008).

Note that the PHYSAT method allows detection of these groups only when they

are dominant, that is, in situations where a given phytoplankton group is a major

contributor (>60%) of the total pigment concentration. It is important to point

out that, even if there is a general agreement on the taxonomic message of each

biomarker pigment, for example, divinyl chlorophyll-a (d-chl-a), is associated with

Prochlorococcus, a large range of relative concentrations (pigments ratios) can be

found in the literature. Pigment ratios are defined as:

Prel = P/([chl-a]+ [d-chl-a]), (5.2)

where P is the measured biomarker pigment concentration. A thorough analysis

of pigment ratios from the literature has allowed us to define a mean, relative

concentration for each group, thus allowing thresholds to be fixed. A group is

considered dominant when Prel is at least equal to 60% of the total. Detailed

information of the method including the use of thresholds is available in Alvain et

al. (2005).

The key step in the success of methods such as PHYSAT is to associate in situ

measurements with remote sensing measurements after having removed the first

order variations due to the chlorophyll-a concentration (and classically used in

previous ocean-colour products). Thus, a second step to establish PHYSAT has

been to transform the nLw SeaWiFS spectra into specific normalized water leaving

radiance, noted nLw∗, to determine the second order variability of the satellite

signal. This was done by dividing the actual nLw by a mean nLw model (nLwref),

established from a large remote sensing dataset of nLw(λ) and [chl-a], cf. equation

5.3.

nLw∗(λ) = nLw(λ)/nLwref(λ, [chl-a]) (5.3)

The nLwref depends only on the standard SeaWiFS chlorophyll-a. By dividing nLw

by this reference, we obtain a new product, denoted nLw∗, which is used in PHYSAT.

Indeed, it has been shown that every dominant phytoplankton group sampled during

the GeP&Co dataset is associated with a specific nLw∗ spectrum. It is thus possible
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to define a set of criteria to characterize each group as a function of its nLw∗

spectrum. These criteria can thus be applied to the global daily SeaWiFS archive

to obtain global monthly maps of the most frequently detected dominant groups,

as shown in Figure 5.4. Note that when no group prevails over the period of one

month, the pixels are associated with an ‘unidentified’ group. Alvain et al. (2008)

studied the geographical distribution and seasonal succession of major dominant

phytoplankton groups which are in good agreement with previous studies (Zubkov

et al., 2000; DuRand et al., 2001; Marty and Chivérini, 2002; Dandonneau et al., 2004;

Longhurst 2007). However, as for all empirical ocean-colour methodology, validation

based on in situ measurements has to be pursued each time a suitable dataset is

available.

5.3 Questions

Q 1: What can you say about the spatial distribution of POC, chl-a and dominant

phytoplankton groups (from Figures 5.1, 5.2, and 5.4)? Look specifically at the

following areas: (i) 45 – 52◦N, 30 – 15◦W and (ii) 47 – 40◦S, 65 – 80◦E for the month

of January.

Q 2: In the future, what sort of potential applications could be considered from

synergy of data of POC, [chl-a] and dominant phytoplankton groups?

Q 3: How would you explain the high POC concentration (∼250 – 300 mg m−3)

encountered around Alaska, British Isles and the Yellow East China Sea seen in

Figure 5.1?

Q 4: What can you say about diatom distribution in Figure 5.4?

Q 5: What will PHYSAT detect (ideally) if the relative contribution to the total

pigment concentration is: 20% for group 1, 40% for group 2 and 40% for group 3?

Q 6: Is it possible to apply PHYSAT, as described above, to coastal waters, and why?

Q 7: What should I do if I want to apply the PHYSAT method to a different satellite?

Q 8: What is essential to establish a method like PHYSAT ?

Q 9: What is essential to apply a method like PHYSAT, in addition to water leaving

radiances?

Q 10: How could we validate PHYSAT or improve PHYSAT?
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5.4 Answers

A 1: These two areas are almost identical in terms of chlorophyll-a concentration

but are distinct in term of POC concentration. Furthermore, these two areas are

also distinct in terms of phytoplankton groups. The region in the Southern ocean is

dominated by diatoms whereas the region in the northern Atlantic is dominated by

nanoeukaryotes. The actual results for these two areas for the period 1998 – 2006

are summarised below in Table. 1.

Table 5.1 Mean near-surface POC and chlorophyll-a concentration over the areas in ques-
tion for the SeaWiFS monthly climatology of January (1998 – 2006), as well as the percentage
of pixels dominated by various phytoplankton groups (nano= nanophytoplankton; Prochl =
Prochlorococcus; SLC = Synechococcus-like cyanobacteria; and Phaeo = Phaeocystis-like).

(45–52◦N, 30–15◦W) (47–40◦S, 65–80◦E)

Chl-a (mg m−3) 0.20 ± 0.07 0.33 ± 0.10

POC (mg m−3) 40.07 ± 10.8 172.8 ± 23.5

% Nano 98 8

% Prochl 2 4

% SLC 0 15

% Diatoms 0 69

% Phaeo 0 4

A 2: Coincident information of [chl-a], POC and dominant phytoplankton groups

could be interpreted from an ecological point of view. We could carry out studies to

investigate:

v links between dominant phytoplankton groups and the food web

v links between phytoplankton species and POC and chlorophyll-a concentration

v relationship between phytoplankton and POC and nutrients, irradiance and

stratification.

In the future, new ocean colour parameters will help to assess the relationship

between the total biomass and/or phytoplankton composition and productivity (for

resource management).

A 3: In these areas, some of the high POCsurf values may result from the presence of

coastal waters, which carry particles of terrigenous origin which affect the remote

sensing reflectance, resulting in an overestimate of the near-surface POC concentra-

tion. The algorithm described above is not appropriate for estimating POC content

in these coastal waters. Consequently, these high POC concentrations should not be

considered.

A 4: Diatom blooms are observed mainly in the North Atlantic and North Pacific

Ocean during spring. During the austral summer, large blooms of diatoms are also

observed at latitudes less than 30◦S as well as in upwelling areas off the west coast
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of southern Africa and South America.

A 5: In this case, PHYSAT will not detect a dominant group, since a dominant group

should contribute at least 60% of the total pigment concentration.

A 6: No, because coastal waters are influenced by other organic and inorganic

material (e.g. sediments, mineral particles, coloured dissolved organic matter) that

can change the nLw but are not related to phytoplankton, and are not taken into

account in PHYSAT.

A 7: In this case, it is necessary to calculate a new look up table containing the nLwref

spectra for the new satellite. It is also necessary to check and adapt thresholds used

to classify nLw∗ spectra.

A 8: As PHYSAT is an empirical method, it is essential to have in situ information

about dominant phytoplankton groups (e.g. using pigments or others methods)

and coincident and simultaneous water leaving radiance measurements, during very

clear sky atmosphere conditions.

A 9: It is essential to have information about atmospheric conditions (such as

aerosol optical thickness) and the concentration of chlorophyll-a.

A 10: Since PHYSAT is an empirical method, it is rather difficult to evaluate errors

precisely. However, each time an in situ dataset with enough information about

dominant phytoplankton groups is available, it is essential to use it to validate the

method. Some optical studies are currently in progress to better understand the

relationship between specific nLw∗ spectra and specific dominant groups.
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Case Study 6

Monitoring Phytoplankton Productivity from
Satellite: An Aid to Marine Resources Management

Frédéric Mélin∗1 and Nicolas Hoepffner∗1

6.1 Introduction

An important biogeochemical quantity monitored by satellites is the concentration

of chlorophyll-a, an omnipresent pigment in all phytoplankton species and, for this

reason, commonly used as an index of phytoplankton biomass. In marine waters,

phytoplankton biomass is a key component of the ecosystem. Phytoplankton are

responsible for the conversion of carbon dioxide to organic carbon through the pro-

cess of photosynthesis, i.e. primary production. Marine photosynthesis represents

approximately half of the total carbon fixation in the global biosphere, making it a

critical element of the Earth’s carbon budget and biogeochemical cycles. In addition,

phytoplankton biomass and primary production are descriptors of the first trophic

level in the marine food chain. Quantitative estimates of these variables from satel-

lite could therefore provide important information on the structure and functioning

of the rest of the food web, up to commercially exploited fish populations.

6.2 Materials and Methods

6.2.1 Modelling phytoplankton photosynthesis

The process of photosynthesis requires the energy from sunlight, and takes place

essentially in the euphotic layer of the oceans. For ecosystem analysis, the mean-

ingful quantity to retrieve is the daily water column primary production, in mg of

carbon fixed per m2 per day. Several numerical methods have been described to

estimate primary production in marine waters (see Behrenfeld and Falkowski 1997),

all differing to some extent according to their resolution in depth and irradiance.

Friedrichs et al. (2008) distinguished four categories of models: depth-integrated,

1European Commission - Joint Research Centre, Institute for Environment and Sustainability,
Via E. Fermi 2749, I-21027 Ispra, Italy. ∗Email addresses: frederic.melin@jrc.ec.europa.eu and
nicolas.hoepffner@jrc.ec.europa.eu
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wavelength-integrated models; depth-resolved but wavelength integrated models;

depth-integrated but wavelength-resolved models; and models resolving both the

depth and the irradiance wavelength. For the purpose of this exercise, the model

used fits within the fully resolved category, following the developments by Platt and

Sathyendranath (1988) as implemented at global scale by Longhurst et al. (1995).

A commonality in many of these models is the requirement for a suitable knowl-

edge of the light field and phytoplankton biomass at any given location, depth and

time. The instantaneous rate of photosynthesis or primary production is commonly

formulated as:

PP(z, λ, t) = f[B(z),φ(λ, z), EPAR(λ, t)] (6.1)

where B is the phytoplankton biomass commonly indexed by the concentration of

chlorophyll-a, φ measures the physiological capacity of phytoplankton organisms

to perform photosynthesis considering the surrounding conditions, and EPAR is the

total irradiance available for photosynthesis between 400 and 750 nm.

6.2.2 Estimation of surface irradiance

The estimation of surface irradiance and the modelling of its propagation through

the water column are key aspects of oceanography. This is particularly true in the

spectral range 350–700 nm that defines the photosynthetically available radiation,

PAR. Assuming that this spectral interval represents roughly half of the total solar

flux at the ocean surface, total PAR could be derived simply from a global database

of solar fluxes, such as the International Satellite Cloud Climatology Project (ISCCP,

Schiffer and Rossow 1983). Another method is to obtain PAR directly from ocean-

colour satellites (Frouin et al. 2003). However, the selected model of primary

production for this exercise requires a complete description of the spectral and

angular characteristics of the incident light. Ignoring these properties could result

in a significant bias in the light absorption by phytoplankton and subsequent errors

in the final results (Kyewalyanga et al. 1992).

The formalism used here to calculate the incident light at the sea surface was

originally described by Bird and Riordan (1986) and adapted by Platt and Sathyen-

dranath (1988) for its implementation in marine primary production modelling.

Gregg and Carder (1990) have completed this model for purely oceanographic appli-

cations with a spectral resolution for direct and diffuse irradiance of 1 nm over the

interval 350–700 nm. In the case of clear sky, the direct [Edd(λ)] and diffuse [Eds(λ)]

components of the irradiance are formulated separately as:

Edd(λ) = µ0E0(λ)Tr (λ)Ta(λ)T03(λ)T02(λ)Tw(λ) (6.2)

Eds(λ) = Edsr(λ)+ Edsa(λ) (6.3)
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where µ0 is the cosine of the sun zenith angle, and E0 the extra-terrestrial solar

irradiance. The direct light path through the atmosphere is modified according to

the transmittance properties of various compounds, including Rayleigh scattering

(Tr ), aerosol extinction (Ta), as well as ozone (T03), water vapor (Tw ), and oxygen

(T02) absorption. The diffuse component is the sum of the contributions from the

molecules (Rayleigh scattering) Edsr and the aerosols Edsa.

All transmittance functions are calculated using meteorological variables either

directly available from satellite data or from climatological databases. Under clear

sky conditions, an accurate description of the aerosol optical properties and their

distribution in time and space is a necessary requirement to estimate the irradi-

ance at the surface. Satellite-based ocean colour radiometry has the capacity to

provide aerosol characteristics (optical thickness and Ångström exponent), with an

appropriate resolution in time and space to monitor their variability over the oceans.

The effect of clouds on the surface light field is three fold. They i) lower

the irradiance intensity at the sea surface; ii) change the shape of the irradiance

spectrum; and iii) reinforce the diffuse part of the irradiance with respect to the

direct component. These effects can be modelled if appropriate information on

clouds is available, such as the cloud optical thickness and structure derived by

remote sensing, or the value of the albedo of the ocean-cloud system, for instance

known with the distribution of reflectivity in the UV as provided by TOMS (McPeters

1998).

6.2.3 Underwater light field

Estimating primary production in the entire illuminated layer of the ocean requires

some knowledge of the light field at any depth within the water column up to a

level of minimum sunlight (i.e. euphotic depth). This is done through a bio-optical

model which accounts for both the optical properties inherent to the water itself and

material in suspension (absorption and scattering), and the distribution /geometry

of the light field.

6.2.3.1 Water optical properties

As the sunlight penetrates in the water column, its magnitude and spectral quality

is altered by water molecules (w) and optically significant constituents like phyto-

plankton (ph), non-algal particles (np) (detritus, minerals) and a coloured fraction of

the total dissolved organic matter (cdom). The total absorption [a(λ)] and scattering

[b(λ)] coefficients of the water are then:

a(λ) = aw(λ)+ aph(λ)+ anp(λ)+ acdom(λ) (6.4)
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represented by the sum of the optical properties inherent to each of these con-

stituents.

b(λ) = bw(λ)+ bph(λ)+ bnp(λ) (6.5)

In practice, the bio-optical model assumes Case 1 waters where the inherent

optical properties of the constituents co-vary with phytoplankton concentration.

The absorption spectrum of phytoplankton, aph(λ), between 400 and 750 nm is

characterized by a continuous envelope reflecting a strong coupling in the energy

transfer between photosynthetic pigments to the photosystems. The spectral shape

and magnitude of the absorption coefficient is parameterized as a function of the

chlorophyll concentration according to Bricaud et al. (1995), statistically repre-

sentative of various marine conditions. The formulation accounts for differences

in the composition of pigments within the phytoplankton cells, as well as in cell

size (package effect) which translates to a flattening effect of aph(λ) for large-cell

phytoplankton communities.

For non-algal particles and dissolved organic substances, the spectral absorption

obeys a similar exponential curve defined by the absorption coefficient at a reference

wavelength and its slope in the lower part of the spectrum (400–440 nm). The

curve parameters for anp(λ) are parameterized as a function of the chlorophyll-

a concentration according to Bricaud et al. (1998). In the case of acdom(λ), the

bio-optical model assumes a constant slope and an amplitude of the absorption

coefficient at 440 nm equivalent to a fixed ratio of the total absorption by particles

and pure sea water.

The absorption due to pure sea water, aw (λ), plays a large role in the photon

budget calculation, particularly in the red part of the visible spectrum where it

reaches maximal values. In the blue part of the spectrum, the absorption coefficient

of water molecules is used to determine the level of the euphotic depth, hence the

productive layer.

With respect to scattering properties, a clear identification of the particles

responsible for the optical signal remains difficult. In the estimation of primary

production, scattering properties are calculated for total particulate matter, i.e.

phytoplankton and non-algal particles, based on a statistical regression between

chlorophyll-a concentration and the scattering coefficient at 550 nm (Loisel and

Morel 1998). Scattering by dissolved substances is assumed to be negligible.

6.2.3.2 Propagation of the light in the water column

The vertical propagation of the light field is modelled according to Sathyendranath

and Platt (1988; 1989), taking into account the attenuation coefficients for direct

and diffuse light. The geometry of the light field is expressed through the mean

cosine of light propagation weighted by the direct and diffuse component of the
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downwelling irradiance. The objective of this exercise is to estimate the light flux

received by a unit volume of water from all directions, the so-called scalar irradiance,

which is the quantity useful for photosynthesis.

6.2.4 Model implementation

Measuring the water column primary production from space also requires some

knowledge of parameters that are not accessible from satellite, such as the vertical

profile of phytoplankton biomass, as well as other optically-significant constituents,

and the photosynthetic parameters reflecting the capacity of phytoplankton com-

munities to assimilate dissolved inorganic carbon through photosynthesis. These

parameters have to be retrieved from field observations and their interpolation to

meet the spatial and temporal resolution of satellite data are a key step of the work.

6.2.4.1 Biomass depth profile

The absorption and scattering coefficients, as well as the attenuation of light through

the water column, are functions of the chlorophyll concentration. Two options

can be considered for the vertical distribution of phytoplankton biomass: i) the

vertical distribution of the phytoplankton biomass is uniform in a well-mixed surface

layer, therefore the chlorophyll concentration at any depth is equivalent to that

at the surface (possibly retrieved by satellite), and ii) in stratified conditions, a

subsurface maximum usually occurs at depths ranging from close to the surface

down to the bottom of the euphotic layer (i.e., 1% or 0.1% light level). The vertical

distribution of the phytoplankton biomass in this case is represented by assuming

a Gaussian distribution superimposed on a background chlorophyll concentration

(Sathyendranath and Platt 1989). Its application in our primary production model

requires a priori knowledge of three additional parameters defining the Gaussian

curve.

6.2.4.2 Photosynthetic parameters

The relationship between the rate of carbon assimilation by phytoplankton and

the submarine irradiance is described by a well-known photosynthesis-light model.

More specifically, the primary production normalized to chlorophyll concentration

is a function of scalar irradiance, described through a curve (P-E curve) defined

by two parameters: the photosynthetic rate at light saturation (or assimilation

number, PmB) and the initial slope of the curve (light-limited photosynthetic rate,

αB). A number of mathematical formalisms have been proposed to describe the

P-E curve, starting with a 2-step linear function (Blackman 1906), to hyperbolic

tangent (Jassby and Platt 1976), and exponential formulations with or without photo-

inhibition (Platt et al. 1980). The photosynthetic parameters issued from statistical
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regression on field measurements using one or another of these formalisms reflects

the physiological characteristics of the phytoplankton community under specific

environmental factors.

6.2.4.3 Biogeographical provinces

Applying satellite data to retrieve the water column daily primary production re-

quires specification of the five parameters described above (three describing the

vertical structure of the biomass profile and two for the photosynthetic efficiency)

on a pixel-by-pixel basis. Different options can be considered when assigning the

parameters: i) constant values of the parameters at all locations and time; ii) the

parameters are continuously variable, responding in the same way to changes in

the forcing factors or; iii) some regional differences in the relationship between the

parameters and the forcing factors constrict the assignment of the parameters to

some ecological provinces, well defined in time and space. Substantial variability has

been observed in the parameters of the biomass profile (Morel and Berthon 1989;

Uitz et al. 2006), as well as the photosynthetic parameters (Kyewalyenga et al. 1998;

Forget et al. 2007). In light of these in situ measurements, assigning a constant value

to the parameters is therefore not appropriate. The application of a global smooth

function relating each, or a combination of these parameters, to physical variables

would be ideal, especially if the physical variables can be retrieved from satellite.

Morel and Berthon (1989) provided solutions to retrieve the Gaussian parameters of

the biomass profile from surface chlorophyll, which was used as an indicator of the

trophic state. These relationships were then confirmed by Uitz et al. (2006) using a

different data set.

On the other hand, the relationships between phytoplankton physiology and

physical variables are more complex. Spatial discontinuities in the photosynthetic

parameters are perceptible, reflecting regional diversity in the phytoplankton com-

munity response to physical forcing (Bouman et al. 2005). One technique suggested

by Platt and Sathyendranath (1988), consists of partitioning the studied area into

several provinces, each having its own set of the required parameters. Within each

province, the parameters are either assumed constant for a given time period, e.g.

seasons (Longhurst et al. 1995; Sathyendranath et al. 1995) or vary continuously

with the physical conditions (Platt et al. 2008).

6.3 Demonstration: Application to global primary
production

The primary production budget is calculated for three different months in 2006

and given for the global ocean, as well as selected basins. The processing starts

with the global estimation of the sun irradiance at the surface and satellite-derived
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Figure 6.1 Daily maps of cloud liquid water path, LWP (left panel) and photo-
synthetically available radiation, PAR (right panel) for May 8, 2006.

chlorophyll concentration. These are inputs to the local model of primary production

which, after selection of the parameters, will then be integrated over time (first over

a day), depth and wavelength to yield a monthly map of daily water-column primary

production.

The geophysical products necessary for the calculation of irradiance in the

case of a clear sky can be identified as: i) atmospheric pressure, relative humidity,

precipitable water vapor, and wind at the water surface; ii) ozone concentration; iii)

aerosol characteristics. The values for the first group are provided as meteorological

products by NCEP (National Center for Environmental Prediction, http://www.ncep.

noaa.gov/), with a spatial resolution of 1◦×1◦ (only the NCEP map given at noon is

used). The ozone concentration is available through TOMS (Total Ozone Mapping

Spectrometer, http://toms.gsfc.nasa.gov/) with a spatial resolution of 1.25◦ in

longitude and 1◦ in latitude, which is extrapolated onto a grid of 1◦×1◦. The

aerosol characteristics are provided on a monthly basis by the SeaWiFS products

(∼9 km resolution, as provided by the GSFC- DAAC, Goddard Space Flight Center,

Distributed Active Archive Center, http://oceancolor.gsfc.nasa.gov). Since this

temporal frequency does not guarantee a complete coverage, the SeaWiFS aerosol

maps are re-gridded onto maps of reduced spatial resolution (1◦).

For cloudy sky, it is assumed that the value of the albedo of the ocean-cloud

system is known with the distribution of reflectivity (at 360 nm) provided by TOMS

(McPeters 1998). The value of reflectivity provided by TOMS is then compared to the

content of a look-up table of solutions of the radiative transfer problem for the cloud

layer, pre-computed for various values of cloud liquid water path (LWP, Figure 6.1).

The associated value of LWP immediately provides the value of transmittance for

direct light from the same look-up table of pre-computed solutions of the radiative

transfer problem with the cloud layer. Total direct irradiance is finally calculated as

the direct irradiance for clear sky weighted by the direct transmittance under cloud

conditions (Figure 6.2).

The surface chlorophyll concentration or phytoplankton biomass can be obtained

directly from various ocean colour sensors and data archives, at the appropriate

space agencies (e.g., http://oceancolor.gsfc.nasa.gov/). In the case of SeaWiFS

http://www.ncep.noaa.gov/
http://www.ncep.noaa.gov/
http://toms.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov
http://oceancolor.gsfc.nasa.gov/
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Figure 6.2 Monthly composites of daily photosynthetic active radiation (PAR)
as computed directly from SeaWiFS data for April (A), May (B), July (C) and
October (D), using top-of-atmosphere radiance to infer the attenuation of solar
irradiance through the atmosphere (Frouin et al. 2003). Units are Einstein m−2

day−1 with a scale typically ranging from 0 to 60. One "Einstein" is equivalent
to one mole of photons.

and MODIS chlorophyll products, daily standard mapped image (SMI) Level 3 (Figure

6.3) are distributed in a global equidistant cylindrical projection (or sinusoidal

equal area grid for MERIS data) with a spatial resolution of 4320 pixels in longitude

and 2160 pixels in latitude. The resolution is ca. 0.0833, equivalent to 9.28 km

at the equator. For global and regional analysis, higher resolution data can be

obtained by processing Level 1-A data with dedicated software packages freely

available from space agencies (e.g., SeaDAS, http://oceancolor.gsfc.nasa.gov/

seadas/; and BEAM, http://www.brockmann-consult.de/cms/web/beam/software).

Having defined the surface photosynthetically active radiation and phytoplank-

ton biomass, we now need to specify the five parameters required to obtain the

water-column integrated daily primary production i.e. three parameters to describe

the vertical structure of the phytoplankton biomass, and two parameters to describe

the photosynthetic efficiency of the organisms.

In this exercise, the primary production model uses a partition of the global

ocean into biomes and provinces (Longhurst 1998; Figure 6.4), based on factors such

as light conditions, circulation patterns, nutrient inputs, the bathymetry and other

elements linking our current knowledge on regional oceanography to the response

of phytoplankton to physical forcing. Statistical analyses are performed on the

available in situ databases to retrieve the most representative set of parameters for

http://oceancolor.gsfc.nasa.gov/seadas/;
http://oceancolor.gsfc.nasa.gov/seadas/;
http://www.brockmann-consult.de/cms/web/beam/software
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Figure 6.3 Daily scenes of Level 3 chlorophyll product as processed from
SeaWiFS for day 148 (May 28, 2006) and day 295 (Oct. 22, 2006).

each of the provinces and/or biomes that will be assumed to remain constant for an

appropriate time period (e.g. seasons).

Figure 6.4 Distribution of the Longhurst oceanographic provinces adopted
for the global ocean. Definition and acronyms of the provinces are detailed in
Longhurst (1998; 2006).

Equation 15.1 can now be used to calculated primary production from daily

scenes of surface chlorophyll concentrations, applying a spectral model to estimate

the underwater light field at a given time and depth interval within the euphotic zone.

The final output is the water-column integrated daily rate of primary production

given in g C m−2 d−1.
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6.4 Questions

Q1: Based on Figure 6.2 and the section on estimation of surface irradiance (Section

6.2.2), what would be the primary and secondary drivers of PAR (photosynthetically

active radiation) on a global scale?

Figure 6.5 Global monthly composites of surface chlorophyll concentration
(left panel) and primary production (right panel) as derived from SeaWiFS data
for April, May, July and October 2006. Areas in black have no data.
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Q2: What are the main drivers of primary production on a global scale? Discuss this

by comparing the maps for primary production (Figure 6.5 right panel) with those

of PAR (Figure 6.2) and chlorophyll concentrations (Figure 6.5 left panel).

Q3: What are the reasons for lack of data for Chla and primary production on Figure

6.5?

Q4: Looking at the maps in Figure 6.5, what are the main features you can observe

in terms of temporal and spatial variability?

Q5: High primary production can be seen in coastal zones and marginal seas. Why

is it consistent with expectations? Given the models presented above, why is the

uncertainty on the derived primary production likely to be higher?

Q6: Looking at the global maps of primary production and zooming in on some

regions, e.g. southeastern Africa and the Agulhas Current (Figure 6.6), what can you

say about some of the surface features?

Q7: At what level of accuracy can primary production be retrieved using satellite

data?

Figure 6.6 Primary production along South Africa-Madagascar region (ex-
tracted from the global map in Figure 6.5)

6.5 Answers

A1: On a theoretical basis, the solar irradiance at the top-of-atmosphere is propor-

tional to the cosine of the solar zenith angle. The irradiance value at the sea surface

is therefore directly affected by the solar angle. In turn, the solar zenith angle is a
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function of latitude and day of the year (or season). PAR intensity and day length

thus vary with location and season, which can be seen when comparing Figures 6.2c

and d: the zone of maximum PAR shifts in latitude with season.

The other main driver of PAR is cloud cover. It changes the PAR amplitude,

spectral shape at the surface, and geometry (diffuse-to-direct ratio). Aerosols have a

similar effect, even though it is less pronounced, except in cases of strong aerosol

events linked with desert dust or biomass burning. In general, these secondary

effects are seen in the figures by zonal variations of PAR at a given latitude (Figure

6.2). A persistent feature is the relative minimum in PAR found slightly north of

the Equator. This should be a region of maximum PAR, but it is characterized by a

recurrent cloud cover associated with the Inter-Tropical Convergence Zone, where

convection generates clouds.

A2: Phytoplankton biomass or chlorophyll concentration is the main driver of

primary production. This is further modulated by PAR. If PAR was the dominant

controlling factor, areas at subtropical latitudes with high PAR would show high

productivity, which is generally not the case. At these latitudes, heat energy from

the more intense sunlight is absorbed in the upper layers of the ocean, leading to a

quasi-persistent stratification of the water column. This structure would prevent any

supply of new nutrients from the deep oceans to the productive illuminated surface

layer, thus keeping the productivity at low levels based on locally regenerated

nutrients.

At higher latitudes, stratification of the water column occurs in spring as tem-

perature increases, subsequently trapping large amount of nutrients from winter

mixing in the euphotic layer. Favourable conditions of nutrients and light trigger

phytoplankton blooms and productivity as seen in Figure 6.5 in the April and May

composites.

A3: Lack of data in monthly composites of phytoplankton biomass and primary

production could result from:

1. Very low sun zenith angle in local winter: for example, the northern seas

between Scandinavia and Greenland have significantly more coverage in April

and May than in October (Figure 6.5). Processing of chlorophyll images, and

hence the estimation of primary prodcution, is restricted to sun zenith angles

lower than 70◦. The sun zenith angle is a function of time, day number and

latitude.

2. Persistent cloud cover: ocean colour sensors only perform in clear sky con-

ditions. Time-composite mapping enables a better coverage of the area of

interest, to some extent, increasing the probability of obtaining cloud free

scenes over each pixel. Nevertheless, areas with no data are still visible in

monthly maps (Figure 6.5), especially along the equator. This area corresponds

to a zone of persistent cloud cover previously described (see Answer 1) as the
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Inter-Tropical Convergence Zone.

3. Persistent thick aerosol plumes: as for clouds, important aerosol emission

events such as desert dust plumes or biomass burning can prevent any signal

from the water surface from reaching the satellite sensor. These events are

recurrent along the west coast of Africa as wind blows over the Sahara and

Sahel regions.

A4: On a global scale, the variability in primary production is driven by the seasonal

cycle. Comparing productivity values in the North Atlantic in April-May with that in

October clearly shows an intensification of phytoplankton production in spring. On

the contrary, in the southern hemisphere, productivity at higher latitudes tends to

be higher in the October map than in April-May. The mechanism associated with

that seasonal cycle is partly explain in Answer 2. Another noticeable feature in

Figure 6.5 is a narrow band of higher productivity along the equator. The prevailing

currents, combined with the Earth’s rotation generates an upwelling process, and

nutrient-rich deep waters are lifted to the surface layers.

A5: Relative to open ocean waters, coastal and shelf areas receive large fluxes of

nutrients from rivers, and from upwelling processes at the coast. Higher productivity

in these waters is thus expected. The four major eastern boundary upwelling

systems along the coast of north- and southwest Africa, California, and Peru are

well identified in the primary production maps (Figure 6.5) as permanent features,

although the strength of the upwelling process varies seasonally. Note that these

upwelling systems account for only 5% of the global ocean, but support major world

fisheries.

Caution should be taken in the interpretation of primary production values

in coastal areas: the bio-optical model presented above follows the Case-1 water

assumption, where optical properties co-vary with Chlorophyll-a. At the coast, the

water can be optically more complex than the open ocean waters because of the large

influence by the land system and catchment basins delivering significant amounts

of dissolved and particulate material to the coast. These additional substances,

evolving independently from phytoplankton, impact on the derivation of chlorophyll

concentration from satellite using standard "case 1 water" algorithms, but also on the

propagation of light through the water column, as they compete with phytoplankton

for light absorption.

A6: Caution should be taken in the interpretation of some surface features observed

in the primary production maps (e.g. staircase-like features, straight and squared

angle fronts). These are methodological artifacts associated with the partition of

the global ocean into specific biogeographical provinces, each of them having their

own set of model parameters reflecting their ecological characteristics (Longhurst,

1998). To tackle regional issues, it may be necessary to re-examine in more detail,

the interactions between physics and biology in the region and the annual variability
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of the forcing fields, such that more realistic provinces can be established for the

studied area. The number of provinces will depend on the knowledge of the regional

oceanography and the availability of the data required for primary production

calculation.

In Longhurst’s original work, the provinces have geometrical shapes (Figure

6.4) with fixed boundaries in space and time, although some adjustment could be

applied from year to year according to the variability of inter-annual forcings. As

a result, sharp squared-like discontinuities occur between provinces. This artifact

does not alter in any way the estimated value of the primary production for each

province, which relies on careful selection of parameters. Various protocols have

been developed for a more dynamic partitioning of the oceans, using remotely-

sensed data to locate the province boundaries and enable their adjustment in

real-time. Readers are referred to Report # 9 of the International Ocean Colour

Coordinating Group (IOCCG, 2009) for the various approaches in addressing oceanic

ecosystem classification.

A7: As mentioned in the introduction, several models to retrieve primary production

from remotely-sensed data have been developed during the last two decades. The

performance of these models, including the one described in this exercise, were

analysed in a series of round-robin experiments aiming at an extensive comparative

assessment of the models (Carr et al., 2006), and their validation against in situ

measurements (Friedrichs et al., 2009; Saba et al., in press). The mean RMSD (root

mean square deviation) of 21 ocean colour models was 0.29 relative to in situ

primary production values collected in the tropical Pacific, with the model described

here being amongst the best performing (Friedrichs et al., 2009). However, the

model’s success varies substantially from region to region (Saba et al., in press), and

in general the performance is still limited by the accuracy of the input variables,

particularly uncertainties in satellite-derived chlorophyll values.
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Case Study 7

Red Tide Detection in the Eastern Gulf of Mexico
Using MODIS Imagery

Chuanmin Hu∗1, Jennifer Cannizzaro1, Kendall L. Carder1, Zhongping
Lee2, Frank E. Muller-Karger1 and Inia Soto1

7.1 Background

Many of the red tides (i.e., harmful algal blooms or HABs) in the eastern Gulf of

Mexico (GOM) (24◦–31◦N, 90◦–80◦W) are caused by the toxic dinoflagellate, Karenia

brevis (previously known as Gymnodinium breve or G. breve). Brevetoxins produced

during K. brevis blooms can kill fish, mammals, and other marine organisms and

cause respiratory irritation in humans (Hemmert, 1975; Asai et al., 1982; Landsberg

and Steidinger, 1998; Kirkpatrick et al., 2004; Flewelling et al., 2005). K. brevis

blooms can also adversely impact local tourism and commercial shellfish industries,

leading to economic losses that have exceeded millions of US dollars during a single

bloom event (Habas and Gilbert, 1974; Larkin and Adams, 2007).

Although K. brevis blooms can change the water to many different colours (e.g.,

brown, red, or even black) depending on the bloom’s cell concentration and the

concentration of other important optical constituents (Dierssen et al., 2006), they

are commonly referred to as red tides. In the eastern GOM, red tides occur every

year, mainly from late summer to early spring, yet their occurrence frequency,

intensity, spatial extent, and duration all vary from year to year. Despite many years

of community efforts, the mechanisms of initiation, maintenance and demise of red

tides are still poorly understood and require further investigation. Data collected

between the 1950’s and the 1980’s suggest that red tides are initiated offshore

in nutrient-poor waters (Tester and Steidinger, 1997), and that they move toward

shore by winds and currents, where they concentrate near fronts and utilize new

nutrients from coastal runoff (Walsh et al., 2006). Several hypotheses that attempt to

explain new nutrient supplies for these HABs have been proposed, including nitrogen

fixation stimulated by atmospheric deposition of iron-rich Saharan dust particles

1College of Marine Science, University of South Florida, 140 7th Ave., S., St. Petersburg, FL 33701,
USA. ∗Email address: hu@marine.usf.edu

2Geosystems Research Institute, Mississippi State University, Stennis Space Center, MS 39529, USA
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(Lenes et al., 2001; Walsh and Steidinger, 2001; Walsh et al., 2006), submarine

groundwater discharge (Hu et al., 2006), and dead fish (Walsh et al., 2009). These

hypotheses remain to be tested, and these possible sources need to be evaluated

relative to sources such as upwelling of deeper GOM waters, riverine inputs, and

benthic nutrient regeneration.

Timely information of K. brevis blooms is essential for all aspects of red tide

studies, including testing hypotheses, assessing and managing the coastal environ-

ment, and forecasting and mitigation of red tides. In the past few decades, several

long-term monitoring programs have invested significant resources in collecting red

tide information. These include the Monitoring and Event Response for Harmful

Algal Blooms (MERHAB) program supported by the U.S. NOAA (National Oceanic

and Atmospheric Administration) and the Florida Fish and Wildlife Research Insti-

tute, several other programs supported by the state of Florida, local environmental

groups, and volunteers. Most of these efforts rely on water sample analysis from

field surveys because this is currently the only accurate means to differentiate K.

brevis from other phytoplankton species. However, field surveys are often lim-

ited in spatial coverage and temporal frequency, especially during severe weather

events. This lack of synoptic and frequent field observations makes it difficult to

1) provide near real-time information for rapid response, and 2) understand the

long-term red tide occurrence statistics. For example, there has been substantial

discussion and debate within the scientific community as to whether there is any

historical trend in red tide occurrence along the west-central Florida coast. While

Brand and Compton (2007) found that the frequency and duration of red tides

appear to have increased in recent years, there was also argument (Christman and

Young, 2006; Alcock, 2007) that this observation may simply be due to the un-

evenly distributed sampling scheme, the so-called observer effect (i.e. increased

sampling during recent years because of increased public and scientific awareness -

http://research.myfwc.com/features/view_article.asp?id=27095).

In addition to the intensive field sampling efforts, satellite remote sensing can

offer synoptic and more frequent measurements, with imagery available in near

real-time (Babin et al., 2008). Therefore, detection of red tides via remote sensing

is highly desirable, and thus has been an active research topic. Satellite imagery

already has been used for operational monitoring of HABs in the GOM region. Some

of the disadvantages are that satellite remote sensing using visible radiance is

limited by cloud cover, spatial resolution, lack of information with depth below

the surface, and algorithm uncertainty. While the first three are inherent with a

given satellite-based instrument and cannot be fully "corrected", there has been

continuous progress in algorithm development to improve the accuracy in red tide

detection. Here, using several examples, we demonstrate how to use Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite imagery to differentiate the

various waters, including K. brevis red tides in the eastern GOM. We will begin by

reviewing briefly the underlying principles of red tide detection from space, and

http://research.myfwc.com/features/view_article.asp?id=27095
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follow with descriptions of the data and methods. We show several examples to

illustrate the potential of this technology.

7.1.1 Principles

The use of ocean-colour satellites for rapid detection of red tides in the eastern GOM

has been described previously (e.g., Stumpf et al., 2003a; Tomlinson et al., 2004;

2008; Hu et al., 2005; Cannizzaro et al., 2008; Amin et al., 2009). K. brevis cells

contain chlorophyll-a and accessory pigments. These pigments have reflectance

spectra that allow them to be differentiated from other water constituents, such as

suspended non-living particles. The chlorophyll-a content of K. brevis cells ranges

from ∼8.5 pg/cell for natural populations to ∼25 pg/cell for cultured populations

(Evens et al., 2001). Assuming 10 pg/cell, a concentration of 2x104 cells l−1 implies

0.2 mg m−3 of chlorophyll-a, close to the clear-water background chlorophyll-a

concentration (Chl-a) in the eastern GOM. Satellite ocean-colour instruments typically

have a measurement precision (not accuracy) of 0.01 – 0.02 mg m−3 for blue waters.

In order for a K. brevis bloom to be detected and identified as such, however, Chl-a

needs to exceed 0.5 – 1 mg m−3, corresponding to K. brevis cell concentrations of

5x104 to 105 cells l−1. These concentrations are high enough to cause fish kills

(Steidinger et al., 1998).

Satellite-derived Chl-a data products can be used to identify areas of possible red

tides. For example, a Chl-anomaly technique was proposed by Stumpf et al. (2003a)

to flag "new" blooms in an area relative to conditions two weeks earlier — under

certain conditions these new blooms can be flagged as potential K. brevis blooms.

There are practical difficulties when applying the Chl-based approach to identify

red tides in the eastern GOM using remote sensing data. The first is the difficulty

with obtaining an accurate chlorophyll estimate in many coastal waters because

of errors in the atmospheric correction algorithms (to remove atmospheric effects

from the spectral satellite signal) and bio-optical inversion algorithms (to convert

the surface spectral signal to Chl-a and other bio-optical parameters). In these

waters, the optical signal may not be dominated by phytoplankton, but instead by

coloured dissolved organic matter (CDOM) from in situ phytoplankton degradation or

terrestrial runoff, resuspended sediments, and/or the bottom effects in clear, shallow

water. The empirical band-ratio OC4 algorithm (O’Reilly et al., 2000; version 4) that

is used to convert the surface spectral signal to Chl-a does not differentiate between

optically important constituents, but rather regards all influences as originating

from Chl-a. This causes large errors in the Chl-a estimates for the eastern GOM

coastal waters (Hu et al., 2003; 2005). Although a semi-analytical algorithm designed

for MODIS (Carder et al., 1999) can separate CDOM from Chl-a and thus improve

Chl-a estimates in clear and moderately turbid waters (Hu et al., 2003), in highly

turbid coastal waters the algorithm switches to an empirical blue/green band-ratio

form.
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The second difficulty is differentiating K. brevis blooms from other phytoplank-

ton blooms. Chl-a cannot be used for this task because both types of blooms contain

high Chl-a. Discrimination between K. brevis and other phytoplankton groups using

in situ optical observations has been done with some success (Cullen et al., 1997;

Millie et al., 1997; Lohrenz et al., 1999; Schofield et al., 1999; Kirkpatrick et al.,

2000). However, these techniques require hyperspectral data (e.g., Craig et al., 2006),

which are not available from satellites. Several HAB detection techniques have been

proposed that can use multi-spectral satellite data. These include methods involving

particulate backscattering (Cannizzaro et al., 2008), spectral curvature (Tomlinson

et al., 2008), a combination of red-wavelength bands (Amin et al., 2009), and image

segmentation (Zhang et al., 2002).

In this demonstration, we will combine the techniques proposed by Hu et al.

(2005) and Cannizzaro et al. (2008). We used MODIS satellite data to show how

to differentiate bloom waters from coastal waters in which other constituents

dominate the optical signal, and to differentiate K. brevis blooms from other blooms.

Specifically, we distinguished phytoplankton blooms from CDOM-rich waters by

examining spectral water-leaving radiance and solar stimulated fluorescence (Hu et

al., 2005), and K. brevis blooms were distinguished from non-K. brevis blooms by

examining bloom backscattering efficiency (Cannizzaro et al., 2008).

7.2 Data and Methods

MODIS Level-1a data were obtained from the U.S. NASA Goddard Space Flight Center

(GSFC) (http://oceancolor.gsfc.nasa.gov). These data are open to the public

within a few hours (typically 3 – 6) of collection by the spacecraft. The following

steps were used to generate georeferenced MODIS images at 1-km resolution:

1. MODIS/Aqua Level-1a data were processed to generate Level-1b (calibrated

total radiance) data for the "ocean colour" spectral wavebands in the visible

and near-infrared, and geolocation data using SeaWiFS Data Analysis System

(SeaDAS) software. The 1-km bands were designed for the ocean with sufficient

sensitivity to detect subtle changes in ocean colour. The Level-1b and geo-

location data were stored in computer files in HDF (Hierarchical Data Format);

2. MODIS Level-1b data were atmospherically corrected to generate the spec-

tral remote sensing reflectance (Rrs(λ), sr−1) and normalized water-leaving

radiance (nLw(λ), mW cm−2 µm−1 sr−1) using SeaDAS. These two parameters

can be derived from each other using the extraterrestrial solar irradiance

(time-independent constants). During this step, ancillary data (surface wind,

pressure, total ozone thickness, and atmospheric water vapor content) were

downloaded from NASA/GSFC and used to estimate the atmospheric contribu-

tion to the satellite-received radiance. The atmospheric correction was based

on the two near-infrared (NIR) bands at 748 nm and 869 nm, from which atmo-

http://oceancolor.gsfc.nasa.gov
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spheric properties were derived and used to estimate the properties at other

wavelengths on a per-pixel basis (Gordon and Wang, 1994). Over turbid coastal

waters, a modification to the atmospheric correction scheme was used that

involves using an iterative approach to account for the non-zero water-leaving

radiance in the NIR (Stumpf et al., 2003b);

3. The spectral Rrs(λ) was used to derive two data products: Chl-a from an em-

pirical band-ratio algorithm (OC4v4; O’Reilly et al., 2000); particulate backscat-

tering coefficient at 551 nm (bbp,551) using a Quasi-Analytical Algorithm (QAA,

Lee et al., 2002). Using nLw(λ) data from three MODIS wavebands at 667, 678,

and 748 nm we derived the Fluorescence Line Height (FLH, mW cm−2 µm−1

sr−1) product using a linear baseline algorithm (Letelier et al., 1996). Further,

the empirically-derived Chl-a was used to estimate the particulate backscat-

tering coefficient at 551 nm using the Morel (1988) algorithm, designed for

phytoplankton dominated (i.e., Case 1) waters:

bbp,Morel = 0.3× Chl0.62 × (0.002+ 0.02× (0.5− 0.25× log10Chl)) (7.1)

4. These products Rrs(λ), nLw(λ), Chl-a, bbp,QAA, bbp,Morel and FLH) were geo-

referenced to a cylindrical equidistant (rectangular, also called geographic

lat/lon) projection for the area of interest. The final images had a spatial

resolution equivalent to 1-km per image pixel. The map-projected products

were stored in HDF files. Individual products were also converted to raster

image formats with an embedded palette using pre-defined colour look-up

tables;

5. nLw(λ) data at 551, 488, and 443 nm were used as the red, green and blue

channels to compose an Enhanced RGB (ERGB) image. The red waveband (667

nm) was not used because water-leaving radiance at this wavelength (nLw(667))

is very low except in sediment-rich waters, thus providing little information

on red tides.

The Florida Fish and Wildlife Research Institute (FWRI) has compiled an in situ

database for K. brevis cell concentration data. Water samples have been collected

by various research and volunteer groups in the eastern GOM and analyzed using

microscopic enumeration techniques. These data, although not continuous in either

space or time, were used as ground-truth to help interpret the MODIS imagery. Below

we demonstrate, step by step, how the various colour features are identified and

interpreted from the MODIS imagery.

7.3 Demonstration

In 2005, a long-lasting, extensive red tide event occurred on the west Florida shelf

(WFS, 24.5◦–30.1◦N and 85.1◦–81.5◦W), which may have been related to excessive

rainfall in both 2004 and 2005 (Hu et al., 2006). The event started in January 2005
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near Tampa Bay, Florida (Tampa Bay is marked as "A" in Figure 7.1a). Figure 7.1

shows several MODIS products from a scene collected on 21 January 2005, where

the red tide patch can be seen.
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PRESENT (1,000 cells or less)
VERY LOWa (>1,000 to <5,000)
VERY LOWb (5,000 to 10,000)
LOWa (>10,000 to <50,000)
LOWb (50,000 to <100,000)
MEDIUM (100,000 to <1,000,000)
HIGH (>1,000,000)

Northwest
Region

Southwest
Region

Key West

East
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Karenia brevis counts, 18-20 January 2005
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B

Figure 7.1 (a – d) MODIS images on 21 January 2005 showing a K. brevis bloom
in coastal waters between Tampa Bay (A, 27.75◦N, 82.56◦W) and Charlotte Har-
bor (B, 26.75◦N, 82.1◦W). The images cover the area between approximately
24.5◦–30.1◦N and 85.1◦–81.5◦W. The various image types were generated us-
ing Steps 1 – 5 described in the Data and Methods section. In (d), the bbp

ratio is defined as bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l−1) ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24764).

Figure 7.1a shows an ERGB image, where the dark colours result from increased

light absorption in the blue wavelength (443 nm) due to high concentrations of

CDOM and/or chlorophyll-a, and bright colours (light blue, yellow and white) result

from suspended sediments and/or shallow bottom. The corresponding Chl-a image

http://research.myfwc.com/gallery/image_details.asp?id=24764
http://research.myfwc.com/gallery/image_details.asp?id=24764
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in Figure 7.1b, derived from the blue-green band ratio algorithm, shows erroneously

elevated Chl-a along the entire coast. In contrast, the FLH image in Figure 7.1c

helps distinguish dark CDOM-rich waters (erroneously interpreted as high Chl-a in

band ratio algorithms) from phytoplankton-rich waters. FLH is insensitive to CDOM

(McKee et al., 2007). However, FLH is not a reliable parameter in sediment-rich waters

(Gilerson et al., 2007). The high FLH values near Charlotte Harbor (Charlotte Harbor

is marked as "B" in Figure 7.1a) for example, may in part be false interpretation of

suspended sediments.

Figure 7.1 reveals: 1) Chl-rich waters (dark colour in ERGB with high FLH values);

2) CDOM-rich waters (dark colour in ERGB with low FLH values); 3) sediment-rich

waters (bright colour in ERGB with high FLH values); and 4) shallow, clear waters

(bright colour in ERGB with low FLH values). Of these, observations 3 and 4 are

sometimes difficult to distinguish from each other, especially for very shallow waters

(< 5 m water depth) because nLw in the fluorescence bands may also be influenced

by benthic algae or sediments. This should not affect our interpretation because

both cases are excluded as potential K. brevis blooms. Of the four, observation 1

represents waters with high biomass (Chl-a) and therefore can be K. brevis or other

blooms. However, there are two drawbacks from this interpretation. The first is its

qualitative nature. Indeed, the terms "high" and "low" only provide a relative sense.

The second drawback is that it is impossible to tell if the high-FLH dark waters

contain high concentrations of the toxic K. brevis or other phytoplankton species

(such as diatoms).

To overcome these two difficulties, we first assume that FLH > 0.015 – 0.02 mW

cm−2 µm−1 sr−1 can indicate bloom conditions and FLH < 0.01 – 0.015 represent non-

bloom conditions (note that the values between 0.01 and 0.02 represent transition

conditions). Observations from South Florida coastal waters suggest that a FLH

value of 0.01 mW cm−2 µm−1 sr−1 is equivalent to about 1 mg m−3 Chl-a for the

range of 0.4 – 4 mg m−3 (Chl = 1.255 × (FLH × 100)0.86, r=0.92, n=77, Hu et al.,

2005), although the relationship between FLH and Chl-a (a function of fluorescence

efficiency) varies.

The technique proposed by Cannizzaro et al. (2008) was then used to examine

the backscattering coefficient at 551 nm (bbp,551) estimated with the QAA algorithm

(Lee et al., 2002) in reference against bbp,Morel from a Case-1 empirical algorithm

(Morel, 1988; Equation 7.1). Results are shown in Figure 7.1d. To exclude non-

productive waters, pixels with Chl-a < 1.5 mg m−3 are masked as black. Because K.

brevis blooms exhibit a lower backscattering efficiency compared to diatom blooms,

the warm colours (yellow-red, with bbp,551/bbp,Morel < 1.0) in Figure 7.1d represent

potential K. brevis blooms. Indeed, near concurrent in situ water sample analysis

from FWRI confirms this finding (Figure 7.1e), where waters offshore of Tampa

Bay showed medium concentrations of K. brevis cells (100,000 to <1,000,000 cells

l−1). Further, in nearshore waters there were no K. brevis found in these samples,

consistent with the high bbp ratios shown in Figure 7.1d. In other words, the high-
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FLH values near Charlotte Harbor (sediment-rich water as identified by the bright

colour in Figure 7.1a) is successfully discarded as potential K. brevis blooms in

Figure 7.1d.
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Figure 7.2 (a – d) MODIS images on 1 October 2004 showing diatom blooms
off Tampa Bay (A, 27.75◦N, 82.56◦W) and Charlotte Harbor (B, 26.75◦N, 82.1◦W).
The images cover the area between approximately 24.5◦–30.1◦N and 85.1◦–
81.5◦W. The various image types were generated using Steps 1 – 5 described
above in the Data and Methods section. In (d), the bbp ratio is defined as
bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l −1) obtained from FWRI
(http://research.myfwc.com/gallery/image_details.asp?id=20058).

While Figure 7.1 demonstrates the multiple steps used to delineate K. brevis

blooms in optically complex waters on the WFS, Figure 7.2 shows another case where

the same technique is used to identify non-K. brevis (in this case, diatom) blooms.

Figure 7.2a shows that, in less than one week after Hurricane Jeanne’s passage on

26 September 2004, most of the WFS waters became enriched in CDOM/Chl-a and

http://research.myfwc.com/gallery/image_details.asp?id=20058
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suspended sediments, all interpreted as high Chl-a (Figure 7.2b). While the FLH

image in Figure 7.2c shows potential blooms in nearshore waters, especially near the

Tampa Bay and Charlotte Harbor mouths, the bbp ratio image in Figure 7.2d indicates

the possibility that these nearshore blooms are K. brevis blooms, is low. Although

concurrent water sample data lack coverage of most shelf waters, the limited data

in Figure 7.2e confirms that the high FLH patches near Tampa Bay and Charlotte

Harbor mouths are non-K. brevis blooms. Indeed, the FWRI database showed 0 cells

l−1 of K. brevis but very high levels (up to 230,000 cells l−1) of Pseudonitzschia (a

toxic diatom) in water samples collected from piers/beaches off Tampa Bay (e.g.

Mullet Key, Anna Maria Island, Skyway fishing pier, offshore Egmont Key) between

2–7 October 2004. In this case, the image set used here not only identifies blooms,

but also recognizes non-K. brevis blooms. Combined with the results shown in

Figure 7.1, we can conclude that this technique is efficient, at least for the two cases

presented here, in delineating the following waters: Chl-rich, sediment-poor waters;

CDOM-rich, Chl-poor waters; sediment-rich and/or shallow, clear waters; K. brevis

and other bloom waters.

7.4 Training

To help prepare and interpret MODIS imagery, we now go through each step to

generate the various types of MODIS images from a map-projected MODIS Level-3

HDF data file. The MODIS data (Figure 7.3) were collected on 7 October 2006, where

ERGB, Chl-a, FLH, and bbp ratio images are presented in Figures 7.3a-d, respectively.

The following steps were used in SeaDAS for image generation, visualization, and

interpretation, but any other software package that has basic image processing

capabilities and HDF compatibility can also be used.

Step 1: Download the MODIS Level-3 HDF data file from the IOCCG website (http://

www.ioccg.org/handbook/Hu_red/) and open in a SeaDAS Display window. Load the

three bands nLw_443, nLw_488, and nLw_551 in the "Band List Selection Window."

Then, under Utilities => Data Visualization => Load True Color Image, choose "Band

List" instead of "Input File." Choose band numbers 3, 2, 1, for the R, G, B channels,

respectively. Enter 10 for slopes and 0 for intercepts. Load the RGB channels in the

"Band List Selection" window, and display the true colour image. An image similar

to Figure 7.3a should appear in a separate window. A high-resolution coastline can

be overlaid on the image by selecting Setups => Coastline. The final image can be

saved as an 8-bit png image (colour coded 2-dimensional image) or a 24-bit png

image (3-dimensional image) under Functions => Output => Display.

Step 2: Use the same method in Step 1 above to load the "chlor_a" data product

from the HDF file into the "Band List Selection Window," and display the image in a

separate window. The colour shades in this window appear strange because of the

http://www.ioccg.org/handbook/Hu_red/
http://www.ioccg.org/handbook/Hu_red/
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Figure 7.3 (a – d) MODIS images on 7 October 2006 showing K. brevis blooms
off the central west Florida between Tampa Bay (A, 27.75◦N, 82.56◦W) and Char-
lotte Harbor (B, 26.75◦N, 82.1◦W). The images cover the area between approxi-
mately 24.5◦–30.1◦N and 85.1◦–81.5◦W. The various image types were generated
using Steps 1 – 5 described in the Data and Methods section. In (d), the bbp

ratio is defined as bbp,QAA/bbp,Morel (e) K. brevis concentration (in cells l −1) ob-
tained from FWRI (http://research.myfwc.com/gallery/image_details.
asp?id=24504.

colour encoding in Step 1. The colour scheme can be changed to a "rainbow" colour

by selecting "Chlorophyll a" in the list of colours from Functions => Color Lut =>

Load Lut. The Chl-a image with this colour scheme may appear different to that in

Figure 7.3b, but the colour stretch can be adjusted by selecting Functions => Rescale

with a log stretch. A colour legend can be added by selecting Functions => Color Bar

=> On, and a high-resolution coastline can also be added using methods in Step 1.

The final image can be saved as a colour-coded png image, similar to Step 1.

http://research.myfwc.com/gallery/image_details.asp?id=24504
http://research.myfwc.com/gallery/image_details.asp?id=24504
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Step 3: The same steps as in Step 2 are used to load the "flh" data product from the

HDF file, display it in a separate window, adjust the colour stretch, and save it as

a colour-coded png image. Note that to show details at low values, a logarithmic

colour stretch is required under Functions => Rescale.

Step 4: The SeaDAS software allows a user to define a new parameter using existing

parameters. Based on the "chlor_a" data available in the "Band List Selection" window,

Equation 7.1 is used to estimate bbp,Morel. Assuming "chlor_a" is the 5th band in the

band list, type in the following commands under Utilities => Data Manipulation =>

User Defined Operations:

bad_idx=where(B5 lt 0.001)

B5[bad_idx]=0.001

result=0.3*B5^0.62*(0.002 + 0.02 * (0.5 - 0.25 * alog10(B5)))

Then, type in "bbp_morel" in the "New band name" field, and click "Run." This will

create a new parameter "bbp_morel" in the "Band List Selection" window (assuming it

is the 6th band in the window). Load bbp_551_qaa from the HDF file to this window

(assuming it is the 7th band in the window). In the "User Defined Operations" window

type in the following commands:

result=B7/B6

low_chl_idx = where(B5 lt 1.5)

result[low_chl_idx]=0.0

Then, type in "bbp_ratio" in the "New band name" field, and click "Run." This will

create a new parameter "bbp_ratio" in the "Band List Selection" window. This band

can be displayed, colour stretched, and saved as a colour-coded png image (together

with a colour legend) using the same steps as above. The saved image should appear

as the opposite of Figure 7.3d with the cold colours representing low values and the

warm colours representing high values.

7.5 Questions

Q1: What do the various colour shades in Figure 7.3a mean? Do the dark shades

between Tampa Bay and Charlotte Harbor indicate high Chl-a?

Q2: Do the high Chl-a values (yellowish and reddish colours indicated on the colour

legend) in Figure 7.3b represent high chlorophyll-a concentrations or something

else?

Q3: What do the high FLH values in Figure 7.3c mean?
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Q4: Do the low "bbp_ratio" values in Figure 7.3d indicate K. brevis blooms?

7.6 Answers

A1: Similar to Figure7.1a, the various colour shades in the RGB image can be

used to qualitatively distinguish various waters. Dark colours result from high

concentrations of CDOM and/or chlorophyll-a, but it is impossible to tell which

of the two is dominant because they both strongly absorb blue light. So the dark

shades between Tampa Bay and Charlotte Harbor do not necessarily indicate high

Chl-a. The bright colours in the ERGB image result from suspended sediments

and/or shallow bottom because they both strongly scatter light.

A2: The warm colours in coastal waters do not necessarily indicate high Chl-a be-

cause the band-ratio empirical algorithm used to derive Chl-a could falsely interpret

other water constituents (CDOM, suspended sediments, and shallow bottom) as

chlorophyll-a.

A3: While FLH is a reliable measure of biomass (Chl-a) in sediment-poor waters, in

sediment-rich waters high FLH values may be simply due to high turbidity and not

due to high Chl-a. Thus, combining Figure 7.3c with Figure 7.3a where sediment-rich

waters can be easily identified, we can infer that high FLH values associated with

dark waters in Figure 7.3a (between Tampa Bay and Charlotte Harbor) are likely

associated with high biomass, while high FLH values associated with bright waters

in Figure 7.3a (in the northern and southern parts of the coastal waters) are likely

associated with high concentrations of suspended sediments.

A4: The low "bbp_ratio" values in Figure 7.3d very likely indicate K. brevis blooms.

These blooms have a lower backscattering efficiency compared with non-K. brevis

blooms. The waters with bbp_ratio < 1 can be classified as dominated by K. brevis

cells. Indeed, analysis of near-concurrent FWRI water sample data (Figure 7.3e)

confirms this inference for coastal waters between Tampa Bay and Charlotte Harbor.

However, it is unknown if waters in the northern part of Florida (associated also with

low bbp_ratio but high FLH) contain high concentrations of K. brevis, because CDOM

interference to MODIS Chl may lead to erroneously overestimated Chl and lower-

than-real bbp ratio. A related case can be found in Figure 7.1d, where offshore waters

north of Tampa Bay show high CDOM (Figure 7.1a) and erroneously high MODIS Chl

(Figure 7.1b and c), leading to low bbp_ratio with high Chl. Cross-examination of all

four types of imagery is necessary to rule out potential false positive detection.
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7.7 Discussion and Summary

We demonstrated the principles of K. brevis bloom detection using a combination of

MODIS imagery and techniques proposed by Hu et al. (2005) and Cannizzaro et al.

(2008). Several other methods have been published (Stumpf et al., 2003a; Tomlinson

et al., 2004; 2008; Amin et al., 2009), but our purpose here is to show the principles

as opposed to providing a comprehensive review on the various techniques.

The three cases shown here are successful examples. However, we must rec-

ognize that nature is more complex than shown here, and none of the published

techniques is perfect. Indeed, our methods can result in both false-positives (i.e.,

identifies K. brevis blooms in non-bloom waters) and false negatives (i.e., identifies

non-bloom in K. brevis bloom waters). Although the evaluation results of Tomlinson

et al. (2008) show low possibilities (about 20 – 30%) for both error types if different

image types are combined, such possibilities cannot be neglected.

The 70–80% success rate of the K. brevis bloom detection methods provides

useful information in at least two aspects: 1) to document the K. brevis occurrence

patterns in both space and time to help understand their initiation, maintenance,

and control mechanisms and 2) to guide rapid response in field surveys. This

capability, combined with the free availability of both MODIS data and processing

software (SeaDAS), makes it particularly useful in implementing any regional satellite-

based HABs monitoring system. The reader is cautioned, however, that not every

HAB species contains high chlorophyll-a pigment or displays low backscattering

efficiency. For a particular region, a regional algorithm based on the unique optical

characteristics of HABs is often required.

At the time of writing, MODIS data from the Aqua satellite (afternoon pass,

2002 – present) are considered to be of science quality, but MODIS data from the

Terra satellite (morning pass, 1999 – present) are provisional. The ocean colour

community, especially the NASA Ocean Biology Processing Group (OBPG), is making

progress by removing noise and improving calibration/retrieval algorithms for

MODIS-Terra. The combined MODIS instruments will significantly increase the

spatial/temporal coverage in many coastal regions, thus providing additional values

in HABs monitoring. Likewise, when MERIS data (Medium Resolution Imaging

Spectrometer, 2002 – present) at 300-m resolution are used, the capability to detect

small-patch blooms should be enhanced. In the absence of fluorescence data (e.g.,

SeaWiFS is not equipped with the fluorescence bands), other techniques (e.g., Chl-

anomaly or spectral curvature, see Tomlinson et al., 2008) can also be used.

In summary, ocean-colour satellite imagery is particularly useful in detecting

and monitoring HAB events because of their synoptic and frequent coverage as well

as the information carried in their spectral reflectance. Correct interpretation of the

various image types requires sufficient knowledge in bio-optics and phytoplankton

dynamics. In any case, the full potential of satellite remote sensing of HABs can

only be realized through coordinated efforts between remote sensing specialists,
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environmental scientists, coastal managers, and other groups.
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Monitoring Green Tides in Chinese Marginal Seas
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8.1 Background

Coastal phytoplankton blooms have been reported world wide. These blooms some-

times cause environmental problems in both developed and developing countries

where excessive nutrients and other pollutants from rapid-growing agriculture, aqua-

culture, and industries are delivered to the ocean. In Chinese coastal waters of the

Yellow Sea, East China Sea, and Bohai Sea, the number and size of toxic algae blooms

(often called red tides) as well as toxic species have increased significantly since

1998, a result of increased nutrient inputs from multiple sources (Zhou and Zhu,

2006).

Similar to red tides, green tides have also been reported in the world’s oceans

(e.g., Fletcher, 1996; Blomster et al, 2002; Nelson et al. 2003; Merceron et al., 2007).

These green tides contain high concentrations of green macroalgae, but they are

typically small in size and restricted to coastal areas. However, between May and July

2008, an extensive bloom of the green macroalgae Ulva prolifera (previously known

as Enteromorpha prolifera, see Hayden et al., 2003) occurred in coastal and offshore

waters in the Yellow Sea (YS) near Qingdao, China (Hu and He, 2008). The macroalgae

bloom created an enormous burden on local government and management agencies

because all the algae that washed up onto the beach and in the Olympic sailing area

near Qingdao had to be physically removed (Figure 8.1). By the end of July 2008,

>1,000,000 tons of algae had been removed. Other methods (e.g., using a 30-km

boom) were employed to maintain an algae-free area of water near Qingdao for the

Olympic sailing competition, with a total cost exceeding US$100 million (Wang et al.,

2009; Hu et al., 2010). The bloom was first speculated to be a result of local pollution,

but analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) satellite

imagery revealed a remote origin (Hu and He, 2008). More recent studies suggested

that the bloom was a result of rapid expansion of the coastal seaweed aquaculture

1Ocean Remote Sensing Institute, Ocean University of China, 5 Yushan Road, Qingdao, China 266003
2Institute for Environmental Protection Science at Jinan, 183, Shanda Road, Jinan, China 250014
3College of Marine Science, University of South Florida, 140 7th Ave., S., St. Petersburg, FL 33701,

USA. ∗Email address: hu@marine.usf.edu
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(a) (b)

(c) (d)

Figure 8.1 Green tide of macroalgae Ulva prolifera in coastal waters of the
Yellow Sea near Qingdao, China. (a) and (b) Macroalgae blooms in coastal waters;
(c) algae washed onto the beach; (d) morphology of the algae, which can grow
to >1 m in length. (Images from public news media http://tupian.hudong.
com/a2_70_76_01300000195282124057760319832_jpg.html).

of P. yezoensis where water circulation and favourable growth conditions brought

remote U. prolifera to Qingdao (Li et al., 2008; Liang et al., 2008; Lu and Qiao, 2008;

Qiao et al., 2008; Sun et al., 2008; Hu, 2009; Liu et al., 2009; Hu et al., 2010). Further,

it was found that smaller green macroalgae blooms were recurrent in history not

only in the YS but also in the East China Sea (ECS) (Hu et al., 2010). Because green

tides of the same macroalgae may occur in the future in both YS and ECS, it is

desirable to establish a remote-sensing based monitoring system to provide timely

information on the occurrence and characteristics of green tides (location, size,

and potential trajectory). Indeed, a rapid-response remote sensing system using

multiple satellites has shown critical values to help implement management plans

during the 2008 bloom event (Jiang et al., 2009). Here, using data from several

http://tupian.hudong.com/a2_70_76_01300000195282124057760319832_jpg.html
http://tupian.hudong.com/a2_70_76_01300000195282124057760319832_jpg.html
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satellite instruments, we describe the methodology used to detect green tides, and a

preliminary monitoring system that covers the entire YS and ECS (Figure 8.2). Our

primary objective is to demonstrate the methods used to identify green tides from

space, which may be applied in other coastal regions where similar green tides also

occur.

Yellow Sea 

East China Sea 

Qingdao

Shanghai

Figure 8.2 Geographic areas (dashed red line) where green tides of the
macroalage Ulva prolifera were found between 2000 and 2009. Our mon-
itoring efforts are focused on the Yellow Sea and East China Sea. The
various colour boxes represent several pre-defined regions to facilitate im-
age display and interpretation. An experimental online monitoring system
has been established and has been in operation since early 2009: http:
//www.station.orsi.ouc.edu.cn:8080/algae/.

8.2 Data and Methods

Three types of data were used. Type 1 is near real-time data obtained from the MODIS

instruments onboard the U.S. NASA satellites Terra (1999 – present) and Aqua (2002

– present), and the MERSI (Medium Resolution Spectral Imager) instrument onboard

the Chinese satellite FY-3A (2008 – present). These satellite instruments have a wide

swath width (>2000 km) and frequent coverage, and provide medium-resolution

(250-m) data suitable for identifying large-scale macroalgae blooms. Although the

individual multi-cell algae are thin and small (Figure 8.1), their aggregation makes

http://www.station.orsi.ouc.edu.cn:8080/algae/
http://www.station.orsi.ouc.edu.cn:8080/algae/
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them appear as surface vegetation and therefore detectable in satellite imagery.

Type 2 is high-resolution data from satellite instruments designed for land and

coastal waters, for example Landsat, SPOT, Synthetic Aperture Radar (SAR), and HJ-1.

These data have limited spatial (hundreds of kilometers) and infrequent (one week

to 16 days) coverage, but can be used to detect small-scale macroalgae blooms. Type

3 is near-real time data from MODIS, MERSI, COCTS (onboard the Chinese satellite

HY-1B, 2007 – present), and QuikScat (1999 – present). These data can provide

environmental conditions of the study regions, including sea surface temperature

(SST), sea surface wind (SSW), and ocean chlorophyll-a concentrations.

For brevity, in this work we demonstrate primarily how to use MODIS (Type

1 data) and Landsat (Type 2 data) to detect macroalgae blooms in open oceans

and coastal waters. The use of Type 3 data to assess environmental conditions

is shown in other case studies. MODIS data source and most processing methods

are described in detail in another case study (Detection of Oil Slicks using MODIS

and SAR Imagery), but for completeness they are summarized here. All data were

downloaded from the U.S. NASA Goddard Space Flight Center (GSFC) at no cost

(http://oceancolor.gsfc.nasa.gov). The data are open to the public in near real-

time and do not require data subscription. The following steps were used to generate

geo-referenced MODIS products at 250-m resolution.

Step 1: MODIS Level-0, 5-minute granules (satellite data collected every 5 minutes

were stored in a computer file to facilitate data management) were downloaded from

NASA/GSFC;

Step 2: MODIS Level-0 data were processed to generate Level-1b (calibrated total

radiance) data for the 36 spectral bands using the SeaWiFS Data Analysis System

(SeaDAS) software. The software was originally designed to process SeaWiFS data

only, but was updated to process data from other satellite instruments including

MODIS. The free software is distributed by the U.S. NASA GSFC. The Level-1b data

were stored in computer files in Hierarchical Data Format (HDF);

Step 3: MODIS Level-1b data were used to derive the spectral reflectance:

Rrc,λ(θ0, θ,∆φ) = πL∗t,λ(θ0, θ,∆φ)/(F0,λ × cosθ0)− Rr,λ(θ0, θ,∆φ), (8.1)

where λ is the wavelength for the MODIS band, L∗t is the calibrated sensor radiance

after correction for gaseous absorption, F0 is the extraterrestrial solar irradiance,

(θ0, θ,∆φ) represent the pixel-dependent solar-viewing geometry, and Rr is the

reflectance due to Rayleigh (molecular) scattering. This step used the software

CREFL from the NASA MODIS Rapid Response Team. The Rrc data of the 7 MODIS

bands (469, 555, 645, 859, 1240, 1640, and 2130 nm) were stored in HDF computer

files.

Step 4: The Rrc data were geo-referenced to a rectangular (also called geographic

lat lon) projection for the area of interest, defined by the North-South and East-

http://oceancolor.gsfc.nasa.gov
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West bounds. Because 1 degree is about 110 km at the equator, the map-projected

data have 440 image pixels per degree, corresponding to 250 m per image pixel.

Although only the MODIS 645- and 859-nm bands have a nadir resolution of 250

m, other bands at 500-m resolution were interpolated to 250-m resolution using a

sharpening scheme similar to that for Landsat (i.e., the 250-m data at 645 nm were

congregated to 500-m data, and the ratios between a congregated 500-m pixel and

the 4 individual 250-m pixels were applied to "sharpen" the MODIS 500-m data from

other bands). The mapping software was written in-house using C++ and PDL (Perl

Data Language) with a mapping accuracy of about 0.5 image pixel;

Step 5: The map projected Rrc data at 645, 555, and 469 nm were converted to

byte values using a logarithmic stretch, and then used as the Red, Green, and Blue

channels, respectively, to compose a RGB image. The purpose was to visually identify

land and clouds;

Step 6: A floating algae index (FAI) data product was derived as follows (Hu, 2009):

FAI = Rrc,NIR − Rrc,NIR′ ,

Rrc,NIR′ = Rrc,RED + (Rrc,SWIR − Rrc,RED)× (λNIR − λRED)/(λSWIR − λRED), (8.2)

where Rrc,NIR′ is the baseline reflectance in the NIR band derived from a linear

interpolation between the RED and shortwave IR (SWIR) bands. For MODIS, λRED

= 645 nm, λNIR = 859 nm, λSWIR = 1240 nm. FAI was designed to quantify the

reflectance in the near-IR due to the vegetation "red-edge" effect, because green

macroalgae floating on the water surface appear as surface vegetation.

Step 7: The RGB and FAI images were loaded in the software ENVI for display and

analysis. The "Link Display" function connects the two image types, so a suspicious

macroalgae slick/patch in the FAI image can be cross-examined with the RGB image

to determine if it might be caused by small clouds instead of macroalgae.

Landsat-5 TM and Landsat-7 ETM+ Level-1b data were obtained from the U.S.

Geological Survey at no cost (http://glovis.usgs.gov). These are radiometrically

calibrated radiance data in seven spectral channels, geo-referenced to a UTM projec-

tion and stored in Geo-TiFF computer files. The same steps used for MODIS were

used to generate Landsat RGB and FAI images using computer codes developed

in-house, except that Landsat wavebands of λRED = 660 nm, λNIR = 825 nm, and

λSWIR = 1650 nm were used in Equation 8.2 to derive a Landsat FAI.

8.3 Demonstration

Figure 8.3 shows a MODIS 250-m resolution FAI image covering a portion of the YS,

where land and clouds are masked by the RGB image, obtained on 29 June 2008. Two

extensive bloom areas are outlined in the dashed circles. These are blooms of the

http://glovis.usgs.gov


116 • Handbook of Satellite Remote Sensing Image Interpretation: Marine Applications

Figure 8.3 Top: MODIS floating algae index (FAI) image on 29 June 2008
showing green tides (Ulva prolifera blooms) in the Yellow Sea near Qingdao,
China. The image covers the area of 34.5◦N – 37◦N and 119◦E – 122◦E. Cloud and
land masks are overlaid on the image. The reflectance spectra of an identified
algae pixel and a water pixel are shown in the inset figure. Bottom: Reflectance
spectra measured from macroalgae mats (green lines) and algae-free water (blue
lines) in the same region, from two different stations.

green macroalgae, U. prolifera, as confirmed by concurrent management activities

(>1000 vessels were utilized to clean the algae in this region between late June and

early August 2008, with >1,000,000 tons of algae collected). Examination of the

Rrc,λ spectral shapes of individual pixels from the slicks/patches show enhanced

reflectance in the NIR, typical for surface vegetation. An example is shown in the
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inset figure of Figure 8.3, where the spectral shape from the algae pixel is very

similar to those obtained from in situ measurements from U. prolifera surface mats

in the same region (Figure 8.3 bottom panels). Even though the in situ reflectance

is defined differently (i.e., with units of sr−1) and MODIS Rrc,λ is not corrected for

aerosol scattering effects, they both show elevated reflectance in the NIR and in the

green (555 nm).

Not every MODIS 250-m pixel is covered completely by the algae. Rather, the

pixels may be mixed with algae and water. The linear design of FAI (Equation 8.2)

makes the unmixing straightforward. Assuming FAI ≤0.0 for 0% algae coverage in

a pixel and FAI≥ 0.02 for 100% coverage in a pixel (these threshold values were

determined by image gradient analysis and visual interpretation), algae coverage for

FAI values between 0.0 and 0.02 can be determined using a linear interpolation. For

the image shown in Figure 8.3, the total number of MODIS 250-m pixels containing

the macroalgae was estimated to be 70,333, corresponding to an area of about 3600

km2. After linear unmixing, the coverage area of algae was estimated to be 1101

km2. The coverage area estimate, however, has some degree of uncertainty and

requires field validation.

 )b( )a(

(c)

Figure 8.4 (a) Landsat-7 ETM+ FAI image on 10 May 2008 covering the north-
ern portion of Subei Bank, where the purple colour indicates high sediment
concentrations. (b) A sub-scene of 512 x 512 pixels as outlined by the red box
in (a). Inset figure shows the location of the Landsat image. (c) An enlarged
portion of (b) showing the algae slick.

For the MODIS instrument sensitivity, we determined that the smallest size of

the algae slick that MODIS FAI imagery could reveal was about 5 m, if the slick

was at least 3 – 4 pixels in length (Hu et al., 2010). Smaller algae, especially during

bloom initiation, could not be detected by MODIS, but could be detected by higher-



118 • Handbook of Satellite Remote Sensing Image Interpretation: Marine Applications

resolution instruments such as Landsat TM and ETM+. Figure 8.4 shows a sub-scene

of a Landsat ETM+ FAI image collected on 10 May 2008 in the north of the Subei

Bank. The small slicks of algae are impossible to find in the corresponding MODIS

FAI image, but the spectral shapes show elevated reflectance in the NIR, indicating

macroalgae blooms. Indeed, Landsat and MODIS were combined to reveal the

temporal evolution of the 2008 bloom event, with the conclusion that the bloom

started in near-shore waters of the shallow Subei Bank (Hu et al., 2010) where

aquaculture of the seaweed P. yezoensis was practiced every year.
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Figure 8.5 (a) MODIS-Aqua 250-m resolution FAI image on 28 April 2009
covering the ECS. (b) A sub-scene of about 100 x 100 km east of the Changjiang
River mouth. (c) An enlarged portion of (b) showing the algae slick. (d) The
reflectance spectra of the identified algae pixel and nearby water pixel.

The retrospective analysis of satellite imagery showed the origin, size, distribu-
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tion, and evolution of the 2008 bloom event as well as smaller blooms in previous

years (Hu et al., 2010). For the purpose of monitoring, MODIS data were obtained

and analyzed in near real-time since early 2009 to monitor the bloom conditions in

both YS and ECS (Figure 8.2). The earliest MODIS FAI image where algae slicks can

be identified, obtained on 28 April 2009 from the Aqua satellite, is shown in Figure

8.5. The MODIS image shows some slicks about 200 km east of the Changjiang

River mouth in the downstream of a NW – SE sediment plume from the Subei Bank,

indicating that the algae slicks originated from nearshore waters of the Subei Bank.

This is the same place where the 2008 macroalgae bloom originated. Spectral shapes

of the algae pixels show elevated reflectance in the NIR (Figure 8.5d), suggesting that

this is some kind of floating vegetation. Considering the proximity to the coast and

the same origin as for the 2008 bloom, it is very likely that the algae is the same

type, i.e., U. prolifera from expanded seaweed aquaculture. Note that this analysis

is based on MOIDS data alone. Information derived from circulation models and

environmental conditions (e.g., wind) provides additional evidence that these algae

slicks can be U. prolifera (Hu et al., 2010).

8.4 Training

MODIS reflectance data collected on 19 May 2009 and 14 June 2000, and their

corresponding RGB and FAI images for the ECS can be downloaded from the IOCCG

website (http://www.ioccg.org/handbook/He/) for the demonstration on how to

identify algae slicks and other features. Because of the synoptic coverage (often

>10 degrees in both N–S and E–W directions) and medium resolution (250-m per

pixel), the MODIS images are very large. Thus, commercial software packages (e.g.,

ENVI, ArcInfo, Erdas Imagine, or any other software that has basic image processing

capabilities) are required to focus on a particular region. Here we use the software

ENVI to demonstrate how to identify the algae slicks using the following visualization

and analysis.

First, the RGB image is loaded into ENVI by using the "File -> Open Image File"

function. Three display windows are shown (similar to Figures 8.6 a–c): scroll, image,

and zoom. The scroll window shows the entire region at reduced resolution to serve

as a browse image; the image window shows a portion of the image at full resolution

(250-m); and the zoom image enlarges a smaller portion by 4 times. During the

initial display in ENVI, the colours are stretched using histogram balancing over the

entire image. The image window can be colour enhanced by a "Gaussian" or linear

enhancement, using the menu of "Image -> Enhance".

Next, the FAI image is loaded into ENVI in the same way. The "Link Display"

function is used to link the two images so that they can be cross examined. This

way, any suspicious features identified on the FAI image can be easily determined if

they are from clouds or land.

http://www.ioccg.org/handbook/He/
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Figure 8.6 (a) MODIS-Terra 250-m FAI image on 19 May 2009 covering the ECS.
(b) A sub-scene of about 100 x 100 km east of the Changjiang River mouth is
shown at 250-m resolution. (c) An enlarged portion of (b) showing the algae
slick. (d) The reflectance spectra of the identified algae pixel and nearby water
pixel.

Finally, the image window in the scroll image is moved to examine the entire

image step by step. It is easy to find that clouds and land show high FAI values.

In cloud-free waters, there are also some slicks associated with high FAI values, as

shown in Figure 8.6b. The same steps are applied to display the MODIS FAI image

from 14 June 2000 (Figure 8.7).

8.5 Questions

Q1: Are the high-FAI slicks in Figure 8.6b the green macroalgae Ulva prolifera?
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Figure 8.7 (a) MODIS-Terra 250-m FAI image on 14 June 2000 covering the
ECS. (b) A sub-scene of about 100 x 100 km east of the Changjiang River mouth
is shown at 250-m resolution. (c) An enlarged portion of (b) showing some
suspicious slicks. (d) The reflectance spectra of the suspicious feature and a
nearby water pixel. Their difference spectrum is also shown.

Q2: Are the high-FAI slicks in Figure 8.7b the green macroalgae Ulva prolifera?

8.6 Answers

A1: Very likely. Once clouds and sun glint can be ruled out as the potential cause of

the slicks, it is almost certain that they are some sort of surface vegetation. However,

to add more confidence, reflectance spectra of the identified slicks and the nearby

water can be examined. Similar to the case for Figure 8.5, Rrc,λ spectra extracted

from pixels of the suspicious slicks show elevated reflectance in the NIR, where an
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example is presented in Figure 8.6d. The data are extracted from the HDF data file

for the locations (in image pixel line coordinates) of the slicks and nearby waters.

The data extraction can be achieved through ENVI or simple computer programs.

Although the high NIR reflectance is only an indication of surface vegetation and

not necessarily the green macroalgae Ulva prolifera, the same arguments applied

to Figure 8.5 can be used here to infer the algae type. In particular, the location

is almost the same as three weeks ago (Figure 8.5) but the size is much larger,

suggesting algae growth in this offshore region.

A2: Although the slicks appear to be floating algae, it is difficult to determine

from the FAI image alone whether the suspicious features are freshwater slicks or

whetehr they are due to water convergence, because the region is contaminated

by significant sun glint (the extensive NE – SW high FAI band in Figure 8.7a). Rrc,λ

spectra extracted from pixels of the suspicious features show elevated reflectance

in all wavelengths (Figure 8.7d), and their difference from the nearby water spectra

do not show distinctive peaks at 859 nm, but rather show flat spectra from 859

to 2130 nm. Therefore, it is unlikely that these high-FAI slicks are floating algae.

Indeed, cloud-free and glint-free images from adjacent days do not show similar

slicks in the same region, confirming this speculation. However, the origin of the

slicks, whether from freshwater or from water convergence, is still unclear.

8.7 Discussion and Summary

Visualization of suspicious slicks in MODIS 250-m imagery and Landsat 30-m im-

agery is relatively easy. Indeed, an interactive colour stretch applied in ENVI to the

single 859-nm band, as referenced against the corresponding RGB image (to detect

clouds), can also reveal the same algae slicks. However, this is labour intensive

due to the interactive colour stretch. First, it is difficult to establish a consistent

time-series because the single band still contains variable aerosol contributions.

Likewise, a simple Normalized Difference Vegetation Index (NDVI) based on the Rrc,λ

data although partially removes the influence of aerosols and varying solar/viewing

geometry, the residual uncertainties due to these spatially and temporarily varying

properties can lead to highly variable NDVI values for the same targets. In contrast,

the baseline subtraction method used in FAI serves as a simple but effective atmo-

spheric correction, where FAI values from the same algae and water pixels remain

relatively stable under varying conditions (Hu, 2009). The linear design also makes

unmixing of mixed algae-water pixels straightforward. Thus, FAI is preferred to

detect and quantify macroalgae blooms.

In this exercise, one must be cautious of the interpretation of suspicious slicks

identified visually, especially in sun glint regions. Analysis of the spectral shape of

the suspicious features and visual examination of images collected from adjacent

days can add more confidence. The most difficult scenario is cloud masking. Clouds
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are visually determined through examining RGB images. The reason for this is that

although several cloud masking algorithms have been proposed and used to process

MODIS data, in the YS and ECS where aerosols can sometimes lead to Rrc,NIR and

Rrc,SWIR significantly higher than the pre-defined threshold reflectance for clouds, the

cloud masks may reduce data coverage. Relaxing such threshold values, on the other

hand, may lead to cloud pixels undetected. Developing a reliable cloud-detection

algorithm specifically for this region should be the next step in this effort.

Synthetic Aperture Radar (SAR) can penetrate clouds. Limited SAR data suggest

that green tide macroalgae blooms appear as bright slicks in C-band images but dark

slicks in L-band images. SAR data therefore serve as an additional data source for

green tide monitoring, although they have less spatial/temporal coverage and are

not free. Likewise, data from other medium-resolution instruments (e.g., MERSI is

equipped with similar 250-m bands as MODIS) and high-resolution instruments (e.g.,

HJ-1 is equipped with similar 30-m bands as Landsat TM and ETM+) can also provide

complementary information to enhance our capability in green tide monitoring.

This work is focused on the green tide detection method. Understanding of the

green tide characteristics (occurrence frequency, initiation, evolution, physiology,

ecology, etc.), on the other hand, requires coordinated inter-disciplinary efforts in

studying phytoplankton ecology, ocean circulation, and environmental forcing for

algae growth (nutrient availability, temperature, etc.). These are beyond the scope of

the current demonstration, but can be found in the refereed literature (e.g., Taylor et

al., 2001; Merceron et al., 2007; Yuan et al., 2008). Our monitoring efforts, however,

do include routine generation and analysis of ocean SST, wind, and chlorophyll-a

concentrations. These properties provide ancillary information to understand the

environmental conditions of the observed macroalgae blooms in the YS and ECS.

In summary, data from a suite of satellite instruments, from the medium-

resolution MODIS and MERSI to the high-resolution Landsat and HJ as well as

the cloud-free SAR, are effective in detecting blooms of the green macroalgae

Ulva prolifera (green tides) in the YS and ECS under various conditions. Com-

bined with other ancillary information, these data form the basis to establish

a semi-operational monitoring system, currently being developed and operated

jointly at the Ocean Remote Sensing Institute of the Ocean University of China

(http://www.station.orsi.ouc.edu.cn:8080/algae/) and the Optical Oceanogra-

phy Lab of the University of South Florida. This case study presents an example

of how satellite imagery can be used to help understand and manage our coastal

environments. Similar systems may be established for other coastal regions where

green tides also occur.
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Case Study 9

Detecting Phytoplankton Community Structure
from Ocean Colour

R.J.W. Brewin∗1, N.J. Hardman-Mountford2, T. Hirata3

9.1 Background

Phytoplankton play a fundamental role in the biogeochemical cycling of the planet,

with different phytoplankton communities having specific biogeochemical roles (Le

Quéré et al. 2005; Nair et al. 2008). Phytoplankton support marine ecosystems

as the primary carbon source for zooplankton, fish and ultimately higher preda-

tors. Furthermore, zooplankton and fish can have selective feeding preferences for

phytoplankton of different sizes and types (Hansen et al. 1994; Scharf et al. 2000;

Jennings et al. 2002). By improving our understanding of the spatial structure of the

different phytoplankton communities, advances in biogeochemical and food-web

models can be made, which may enhance our comprehension of the Earth system

needed to predict future change.

Methods that can identify and quantify different elements of the phytoplankton

community can provide useful information to help understand biogeochemical and

ecological processes. Observing the in situ size structure and taxonomic grouping of

phytoplankton at a global scale is, however, a challenging task. Satellite observation

is currently the only practical method of observing the global ocean synoptically.

With increasing concern as to how climate variation is affecting marine ecosystems,

there is a large expectation of satellite remote sensing to provide global obser-

vations of the taxonomic or functional groups of phytoplankton, moving beyond

conventional pigment biomass (i.e. chlorophyll).

Recently, a variety of bio-optical and ecological methods have been established

that use satellite data to identify and differentiate between phytoplankton functional

types (PFTs) or phytoplankton size classes (PSCs) in the surface ocean. These can be

summarised into four main types: spectral-response methods which are based on

1School of Marine Science and Engineering, University of Plymouth, UK. ∗Email address:
robert.brewin@plymouth.ac.uk

2National Centre for Earth Observation, Plymouth Marine Laboratory, UK
3Graduate School of Environmental Earth Science, Hokkaido University, Japan
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differences in the shape of the light reflectance/absorption spectrum for different

PFTs/PSCs (Sathyendranath et al. 2004; Alvain et al. 2005; Ciotti and Bricaud

2006; Alvain et al. 2008; Brewin et al. 2010a), abundance-based methods which

use information on the magnitude of chlorophyll biomass or light absorption to

distinguish between phytoplankton communities (Devred et al. 2006; Uitz et al.

2006; Hirata et al. 2008a; Brewin et al. 2010b), methods that retrieve the particle

size distribution from satellite-derived backscattering signal and then relate the

particle size to the phytoplankton community (Hirata et al. 2008b; Kostadinov et al.

2009), and ecological-based approaches which use information on environmental

factors, such as temperature and wind stress to supplement the bio-optical data

for investigating specific taxa (Raitsos et al. 2008). Recent intercomparison studies

suggest that abundance-based approaches appear robust at detecting dominant

phytoplankton size classes (Brewin et al. 2008).

9.1.1 Phytoplankton size class model

Here we present a method for determining the fractional contribution of a phyto-

plankton size class (pico- <2µm, nano- 2-20µm and micro-phytoplankton >20µm)

to the overall chlorophyll concentration (Brewin et al. 2010b). The model is an ex-

tension of the Sathyendranath et al. (2001) approach, based on the assumption that

small cells dominate at low chlorophyll concentrations and large cells at high con-

centrations. The model can be expressed through two simple exponential equations.

In this example the subscripts 1, 2 and 3 refer to pico-, nano- and microphytoplank-

ton, and the total chlorophyll-a concentration is referred to as C (mg m−3). Firstly,

the chlorophyll concentration of the combined pico-nanophytoplankton population

(C1,2) can be expressed as:

C1,2 = C1,2
m[1− exp(−S1,2C)], (9.1)

where, C1,2
m is the asymptotic maximum value for C1,2 and S1,2 determines the

increase in C1,2 with increasing total chlorophyll (C). Secondly, the chlorophyll

concentration of the picophytoplankton population (C1) can be expressed as:

C1 = C1
m[1− exp(−S1C)], (9.2)

where C1
m is the asymptotic maximum value for C1 and S1 determines the in-

crease in C1 with increasing total chlorophyll-a (C). The chlorophyll-a concentration

of nanophytoplankton (C2) and microphytoplankton (C3) can then be calculated

according to:

C2 = C1,2 − C1, (9.3)

C3 = C− C1,2. (9.4)
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The percentage of each phytoplankton size class to the total chlorophyll concen-

tration (C) can then be calculated by dividing the size-specific chlorophyll concentra-

tions (C1, C2 and C3) by the total chlorophyll concentration (C) and multiplying by

100, such that

P1 = (C1/C)× 100, (9.5)

P2 = (C2/C)× 100, (9.6)

P3 = (C3/C)× 100, (9.7)

where P1, P2 and P3 represent the percentages of pico-, nano- and microphytoplank-

ton to the total chlorophyll concentration (C). Parameter values for C1,2
m, C1

m, S1,2

and S1 were taken from Table 1 in Brewin et al. (2010b), and set to 1.06, 0.11, 0.85

and 6.80, respectively. When using these parameters, the model performed well

when applied to satellite chlorophyll data and compared with in situ measurements

(see section 4.3 in Brewin et al. 2010b).

Figure 9.1 shows the results from applying the model of Brewin et al. (2010b) to

SeaWiFS satellite data for January and July 2006. The model was applied to daily

total chlorophyll (C) images from each month and then averaged to produce the two

monthly composite images. The results show clearly that very small phytoplankton

cells (picophytoplankton, <2µm) dominate in the low-production, subtropical gyres,

medium-sized cells (nanophytoplankton, 2-20 µm) predominate in the equatorial

upwelling area and in higher latitude regions depending on the boreal or austral

summer. Relatively large cells (microphytoplankton, >20µm) dominate in coastal

areas and during highly productive events, such as high-latitude spring/summer

blooms. Furthermore, the size fractionation shows that nanophytoplankton tend to

maintain a background population of between 20-50% of the standing stock in most

regions, whereas pico- and microphytoplankton have larger spatial variability.

9.1.2 Equatorial Pacific

The equatorial Pacific is a unique region of our oceans. It can act as a large source of

CO2 to the atmosphere through the upwelling of CO2-rich waters along the equator

and advection of CO2-rich waters from the South-American coast (Etcheto et al. 1999;

Feely et al. 1999), and also a sink though primary production and export (Takahashi

et al. 2002). It is one of only three open-ocean areas that, despite having high nitrate

and phosphate concentrations, display moderately-low phytoplankton biomass

(Martin 1991; Behrenfeld et al. 1996) and are referred to as exhibiting High Nutrient,

Low Chlorophyll characteristics (HNLC, Thomas 1979). This enigma has been linked

to either the lack of iron that limits the growth of the phytoplankton (Martin and

Fitzwater 1988; Behrenfeld et al. 1996; Coale et al. 1996) or to a large amount
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Figure 9.1 The percentage of total chlorophyll-a attributed to each of three
phytoplankton size classes calculated according to the model of Brewin et al.
(2010b), for the months of January and July 2006. The model was applied to
daily Level 3 SeaWiFS composite images from each month and then averaged to
produce monthly composites. Light grey pixels represent unidentified pixels
due to cloud coverage or high sun zenith angles and dark grey pixels represent
land.

of grazing from higher trophic levels that limits phytoplankton growth (Walsh

1976; Cullen 1991). Despite exhibiting moderately-low phytoplankton biomass,

changes in the phytoplankton composition and sporadic large-scale accumulations

of phytoplankton biomass have been found to occur (Chavez et al. 1990; Ryan

et al. 2002), making the equatorial Pacific an ideal site to monitor variations in

phytoplankton composition from satellite.

The model of Brewin et al. (2010b) was developed using an extensive dataset

from the Atlantic Ocean, and validated using data with wider geographical coverage.

However, the model of Brewin et al. (2010b) has not been validated in the equato-

rial Pacific. In light of this, 32 High Performance Liquid Chromatography (HPLC)

pigment measurements (depth <10m) were downloaded from the NASA SeaBASS

dataset (Werdell and Bailey 2002). Using diagnostic pigment analysis (Vidussi et

al. 2001; Uitz et al. 2006; Brewin et al. 2010b) the in situ size-specific chlorophyll

concentrations (C1, C2 and C3) and size-specific percentage contributions to the total

chlorophyll concentration (P1, P2 and P3) were calculated for each sample. Then the
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model of Brewin et al. (2010b) was applied to the in situ chlorophyll concentration

to estimate C1, C2, C3, P1, P2 and P3 (Equations 9.1 – 9.7). Figure 9.2 shows the

location of the 32 pigment measurements and a comparison between the diagnostic

pigment-derived values and the values derived using the model. The two agreed well

with an absolute root mean square error (RMSE) of 0.006 to 0.010 mg m−3 for the

size-specific chlorophyll concentrations, and between 4.4 to 9.4 % for the percentage

contributions to the total chlorophyll concentration, supporting the application of

the Brewin et al. (2010b) model to the equatorial Pacific.

Figure 9.2 Location of the 32 HPLC pigment measurements used to validate
the model of Brewin et al. (2010b) for use in the equatorial Pacific. The biome-
based system of Hardman-Mountford et al. (2008) is superimposed on the globe
with dark grey to light grey areas representing a transition from biomes with
very low chlorophyll-a to biomes with very high chlorophyll-a . Results of the
validation are shown to the left (C1, C2 and C3) and right (P1, P2 and P3) of the
globe.

In this case study we apply the model of Brewin et al. (2010b) to daily, Level 3,

SeaWiFS chlorophyll composites to produce two 8-day composites of the percentage

contribution of the three size classes to total chlorophyll (P1, P2 and P3), for 28

July – 4 August 1998 and 2003. We also produce two images of SST derived from

the Advanced Very High Resolution Radiometer (AVHRR) sensor, for the same

time periods. Differences in SST and the community composition of the three size

classes, for the same seasonal week in the two contrasting years, are mapped in the

equatorial Pacific.
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9.2 Data and Methods

Sixteen daily Level 3 mapped SeaWiFS chlorophyll composites were downloaded

from the NASA ocean colour website (http://oceancolor.gsfc.nasa.gov/), encom-

passing two eight-day periods.

- Week 1 (28 July – 4 August 1998)

- Week 2 (28 July – 4 August 2003)

All SeaWiFS data were extracted from the zipped format. Two SST AVHRR global

composites for the same 8-day periods (week 1 and 2) were downloaded from the

NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive

Centre (ftp://podaac.jpl.nasa.gov/). Night time AVHRR Pathfinder (Version 5)

8-day means of sea surface temperature (SST) at 4 x 4 km2 resolution were used.

Night time SST products were used so that the solar radiation bias (the diurnal

fluctuation in SST) that can occur from surface heating during daytime could be

avoided. We used global, equal-angle, best SST. Information on the data used in this

study is outlined in Table 9.1.

The software used in this study was IDL Version 6.3, Microsoft Windows (Win32

x86 m32). All IDL code developed for this study is available at http://www.ioccg.

org/handbook/Brewin/. The procedure below has been developed into an IDL pro-

gram (Handbook_RS_PSC_code.pro) to allow the reader to reproduce this example

(see section 1.4 Training below).

The first step involves loading the sixteen daily Level 3 mapped SeaWiFS chl-a

composites into the IDL program. All sixteen daily SeaWiFS composites are loaded

into IDL using code developed by the Ocean Color Discipline Processing Group

(readl3smi.pro). This code is designed to simplify the reading of SeaWiFS standard L3

mapped images, and converts the digital numbers (DN) of the image to chlorophyll-a

values (mg m−3). Once these images are loaded, the Brewin et al. (2010b) algorithm

(Equations 9.1 – 9.7) is applied to each daily image on a pixel-by-pixel basis to derive

P1, P2 and P3 (the percentages of pico-, nano- and microphytoplankton to the total

chlorophyll-a concentration (C)).

The daily composites from week 1 are then averaged to create 8-day composites

of P1, P2 and P3, and the same averaging is applied to the eight daily composites

from week 2. Note that we applied the Brewin et al. (2010b) algorithm to daily

images then averaged to produce an 8-day composite, as opposed to applying the

algorithm directly to 8-day SeaWiFS chlorophyll-a composites, as the nonlinearity of

equations 1 and 2 could introduce errors when applying the model directly to 8-day

SeaWiFS chlorophyll-a composites.

The two SST images are then loaded into IDL using IDL code developed by

the National Oceanographic Data Centre (pathfinder_v5_hdf_read.pro). Once these

images are loaded, the data is converted to SST values (◦C) from digital numbers

(DN) according to:

http://oceancolor.gsfc.nasa.gov/
ftp://podaac.jpl.nasa.gov/
http://www.ioccg.org/handbook/Brewin/
http://www.ioccg.org/handbook/Brewin/
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SST = 0.075×DN− 3.0, (9.8)

where the value 0.075 represents the slope and -3.0 the y-intercept. This results in

six, 8-day, 9 x 9 km2 resolution composites (arrays of [4320, 2160]) of P1, P2 , P3 for

both week 1 and 2, and two 8-day 4 x 4 km2 resolution composites (arrays of [8192,

4096]) of SST for both week 1 and 2. The differences between the two contrasting

weeks are then calculated according to:

P1,D = P1(week1)− P1(week2), (9.9)

P2,D = P2(week1)− P2(week2), (9.10)

P3,D = P3(week1)− P3(week2), (9.11)

SSTD = SST(week1)− SST(week2), (9.12)

where, P1,D, P2,D, P3,D and SSTD refer to the difference between the three size

classes and SST of the two contrasting weeks. This results in 12 images to be used

for analysis: P1(week1), P2(week1), P3(week1), SST(week1), P1(week2), P2(week2),

P3(week2), SST(week2), P1,D, P2,D, P3,D and SSTD. All 12 images are then rescaled to

36 x 36 km2 resolution, to reduce computational requirements when plotting the

images.

A plotting procedure is then set up to plot each of these 12 images and re-

project them using an orthographic projection. The corresponding latitude and

longitude values were calculated for each pixel. Values of each pixel in the image

are binned into 256 ranges, and each range is assigned a colour depending on the

colour scheme chosen. These 256 bins are then plotted onto an image of 1080

by 540 pixels, with each pixel representing 36 x 36 km2 resolution. All pixels

with no values (either due to cloud coverage or high sun zenith angles) are binned

and assigned a light grey colour before being plotted. Using the SeaWiFS entire

mission chlorophyll-a composite, a land mask has been developed (see "Land_mask",

http://www.ioccg.org/handbook/Brewin/Data/) and the land is assigned a dark

grey colour before being plotted onto the image.

Each image is then re-projected to an orthographic projection using the IDL

functions "map_set.pro" and "map_proj_image.pro". Here we took the latitude of

the point on the Earth’s surface to be mapped to the centre of the projection plane

to be 0◦, and the longitude of the point on the Earth’s surface to be mapped to the

centre of the map projection to be -130◦, to focus our attention to the equatorial

Pacific. All 12 images are then projected onto the same image montage for analysis,

and the respective colour bars for each image are also plotted (Figure 9.3).

http://www.ioccg.org/handbook/Brewin/Data/
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Table 9.1 Satellite data used in the study (also available at http://www.
ioccg.org/handbook/Brewin/Data/), including a land mask.

Date Data Filename Location Use

28/07/98 chl-a S1998209.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

29/07/98 chl-a S1998210.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

30/07/98 chl-a S1998211.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

31/07/98 chl-a S1998212.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

01/08/98 chl-a S1998213.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

02/08/98 chl-a S1998214.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

03/08/98 chl-a S1998215.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

04/08/98 chl-a S1998216.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

28/07/03 chl-a S2003209.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

29/07/03 chl-a S2003210.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

30/07/03 chl-a S2003211.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

31/07/03 chl-a S2003212.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

01/08/03 chl-a S2003213.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

02/08/03 chl-a S2003214.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

03/08/03 chl-a S2003215.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

04/08/03 chl-a S2003216.L3m_DAY
_CHL_chlor_a_9km.bz2

http://oceancolor.gsfc.nasa.gov/
cgi/l3

8-day
PSC

28/07/98
-

04/08/98

SST 1998209-1998216.
s0481pfv50-bsst-16b

ftp://podaac.jpl.nasa.gov/pub/ 8-day
SST

28/07/03
-

04/08/03

SST 2003209-2003216.
s0484pfv50-bsst

ftp://podaac.jpl.nasa.gov/pub/ 8-day
SST

http://www.ioccg.org/handbook/Brewin/Data/
http://www.ioccg.org/handbook/Brewin/Data/
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
ftp://podaac.jpl.nasa.gov/pub/
ftp://podaac.jpl.nasa.gov/pub/
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9.3 Demonstration Section

Figure 9.3 shows a plot of the 12 images developed in the previous section where

(a), (d), (g) and (j) are from week 1, (b), (e), (h) and (k) are from week 2, and (c), (f), (i),

and (l) show the differences between the two weeks. The percentage of chlorophyll-

a attributed to microphytoplankton is shown in the top three images (a-c), that

attributed to nanophytoplankton in the next three (d-f), then picophytoplankton

(g-i). The bottom three images represent SST (◦C, j-l).

When analysing the microphytoplankton images (Figure 9.3a-c), one notices a

higher proportion of microphytoplankton in the equatorial region during week

1 compared with week 2. This is highlighted in Figure 9.3c which shows the

differences between the two microphytoplankton images and indicates 20% higher

microphytoplankton % chlorophyll-a in the equatorial Pacific during week 1, with

differences as high as 50% in the centre of this bloom, when compared with week 2.

When analysing the nanophytoplankton images (Figure 9.3d-f), one also notes

slightly higher nanophytoplankton % chlorophyll-a in the equatorial region and

slightly lower % chlorophyll-a just south-east of the equator during week 1 when

compared with week 2 (Figure 9.3f). In contrast to the microphytoplankton, there

is a significantly lower picophytoplankton % chlorophyll-a in the equatorial region

during week 1 when compared with week 2 (Figure 9.3i). Furthermore, in contrast to

nanophytoplankton, higher picophytoplankton % chlorophyll-a can be observed just

south-east of the equator during week 1, compared with week 2 (Figure 9.3i).

Turning our attention to the SST images (Figure 9.3j-l), significant differences

are noted between the two weeks. During week 1, lower SST values are seen in the

central equatorial Pacific and slightly higher SST values in the south-east equatorial

Pacific when compared with week 2.

9.4 Training

To help interpret the case study, we will now go through each of the steps to generate

Figure 9.3. An IDL program (Handbook_RS_PSC_code.pro) was developed to allow

the reader to reproduce this example.

1. Step 1: Download all the files needed for the case study (Table 1) from http:

//www.ioccg.org/handbook/Brewin/Data/ and save them to an appropriate

folder on your desktop. Extract all the SeaWiFS files with the extension ".bz2"

from their zipped format.

2. Step 2: Download all the IDL code needed for the case study from http:

//www.ioccg.org/handbook/Brewin/IDL%20Code/ and save it to your IDL path

directory.

http://www.ioccg.org/handbook/Brewin/Data/
http://www.ioccg.org/handbook/Brewin/Data/
http://www.ioccg.org/handbook/Brewin/IDL%20Code/
http://www.ioccg.org/handbook/Brewin/IDL%20Code/
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Figure 9.3 Plot of the 12 images developed in the case study. Figures (a), (d),
(g) and (j) are from week 1, (b), (e), (h) and (k) from week 2, and (c), (f), (i), and (l)
show the differences between the two weeks. Microphytoplankton % chlorophyll-
a is shown in the top three images (a-c), followed by nanophytoplankton (d-f),
then picophytoplankton (g-i), and at the bottom are the three SST images (j-l) in
◦C.

4. Step 4: The code will then run through the methodology described in section

9.2 (Data and Methods) and save Figure 9.3 to the directory where the files

were downloaded in step 1.
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5. NOTE: This program was run on Windows, using an Intel(R) Core(TM) 2 CPU

6320 @ 1.86GHz with 1.97GB of RAM. Using this computer, the code takes

about 8 minutes to run. The code may take longer/shorter to run on other

machines, may need to be manipulated for a UNIX/LINUX environment, and

may need to be manipulated for other version of IDL (currently developed for

IDL Version 6.3).

9.5 Questions

Q1: What phenomena may be causing the high microplankton % chlorophyll-a

(Figure 9.3a) and the low SST values (Figure 9.3j) in the central equatorial Pacific

during week 1?

Q2: Considering that the two 8-day composites are taken at the same seasonal time

period, why are there such large differences in both SST and the phytoplankton

community composition in Figure 9.3c, f, i and l?

Q3: How do the higher SST values south-east of the equatorial Pacific in week 1 (Fig-

ure 9.3j and l) appear to be influencing the phytoplankton community composition?

9.6 Answers

A1: The phenomena causing the high microplankton % chlorophyll-a (Figure 9.3a)

and the low SST values (Figure 9.3j) in week 1, in the central equatorial Pacific, is

the 1997-1999 El Niño/La Niña event. The periodic occurrence of El Niño and La

Niña episodes has a strong effect on the physical forcing in the equatorial Pacific.

Under non-El Niño conditions, easterly trade winds create a channel of cold surface

water along the equator, referred to as the Eastern Equatorial Undercurrent (EUC).

The EUC flows eastward across the equator at a depth of 20 to 200 m (Toggweiler

and Carson 1995). During an El Niño event, a weakening or reversal of the trade

winds occurs, which weakens the EUC and hence subdues the upwelling of cold

nutrient rich waters and deepens the thermocline. Surface waters become warmer

and nutrient poor. During a La Niña event, there is a strengthening of the trade

winds, which strengthens the EUC, enhancing the upwelling of cold nutrient rich

waters and raising the thermocline.

The 1997-1999 El Niño/La Niña event was the strongest of the 20th century

(Kerr 1998; McPhaden 1999). During July/August 1998 (week 1) a large La Niña

event occurred which strengthened the trade winds resulting in upwelling of cold

nutrient rich waters close to the surface (McPhaden 1999). This is clearly seen in

Figure 9.3l by the lower SST values during week 1 when compared with week 2 in the

central equatorial Pacific (note that week 2 was during a non- El Niño/La Niña year).
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This injection of cold nutrient rich waters during July/August 1998 ignited a huge

surface phytoplankton bloom, with a 40-fold increase in chlorophyll-a (Chavez et al.

1999). This phytoplankton bloom is the largest phytoplankton bloom observed in

the equatorial Pacific to date. This bloom, driven by the EUC, migrated from east to

west at a speed of 105 km day−1 and its shape was distorted by Tropical Instability

Waves (TIWs) (Chavez et al. 1999; Ryan et al. 2002) due to the meridional transport

linked to the propagation of TIWs (notice the wave like shape of the bloom in Figure

9.3c).

A2: Despite the two 8-day composites being at the same seasonal time period,

large differences in both SST and the phytoplankton community composition in

Figure 9.3c, f, i and l are related to the fact that week 1 was during a large La Niña

event (July/August 1998) and week 2 during non- El Niño/La Niña conditions. The

inter-decadal occurrence of the El Niño/La Niña phenomena appears to be related to

these differences.

Studies in the equatorial Pacific have suggested that diatoms do not contribute

more than 20% of phytoplankton biomass (Blanchot et al. 2001; Kobayashi and

Takahashi 2002; Dandonneau et al. 2004). Assuming diatoms comprise the majority

of the microphytoplankton in the Equatorial Pacific, this value compliments our

estimates of microphytoplankton % chlorophyll-a in non- El Niño/La Niña conditions

(week 2, Figure 9.3b). However, blooms of diatoms have been reported in this area

(Bender and McPhaden 1990; Chavez et al. 1990; Archer et al. 1997), particularly

under La Niña events (Chavez et al. 1999; Strutton and Chavez 2000; Ryan et al.

2002; Alvain et al. 2008). Under such conditions, and using the algorithm of Brewin

et al. (2010b), microphytoplankton appear to contribute as much as 70% of the

phytoplankton biomass (Figure 9.3a).

Iron limitation is especially important for diatoms (Boyd, 2002) and when nutri-

ents and iron are abundant in the photic layer, diatoms grow rapidly and dominate

the phytoplankton population. Using in situ measurements, Chavez et al. (1999)

linked the elevated levels of macronutrients and enhanced supply of iron associated

with the La Niña event, to an increase in the concentration of diatoms (Table 1,

Chavez et al. 1999), supporting the results shown in Figure 9.3a-c.

Differences in nanophytoplankton between the two weeks are less pronounced

with slight increases in nanophytoplankton % chlorophyll-a at the periphery of the

microphytoplankton bloom in week 1 (Figure 9.3f). In contrast to microphytoplank-

ton, picophytoplankton are seen to have much lower % chlorophyll-a across the

equatorial Pacific in week 1 when compared with week 2 (Figure 9.3i).

A3: The higher SST values seen in the south-east equatorial Pacific during week 1

(Figure 9.3j and l) appear to correspond to changes in the composition of nano- and

picophytoplankton. While much of this area is masked by cloud coverage in Figure

9.3c, f and i, there is a slightly higher % chlorophyll-a of picophytoplankton in week
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1 when compared with week 2 (Figure 9.3i) in the south-east equatorial Pacific. The

inverse is seen for nanophytoplankton (Figure 9.3f).

Since picophytoplankton are smaller in size, they have a higher surface-to-volume

ratio than nanophytoplankton, and hence can absorb nutrients with high efficiency

under nutrient limited conditions (Raven 1998). Therefore, in stratified, nutrient

depleted areas, such as the southern Pacific subtropical gyre, picophytoplankton are

expected to dominate (Chisholm 1992; Dandonneau et al. 2004; Ras et al. 2008).

When comparing Figure 9.3g with Figure 9.3h, the southern subtropical gyre

(indexed by the high levels of picophytoplankton >60 % chlorophyll-a south of the

equator) appears further north and east in Figure 9.3g when compared with Figure

9.3h, possibly causing these discrepancies. This may be linked to changes in physical

forcing during a La Niña event.

9.7 Summary

In this example we have highlighted the strong link between the community compo-

sition of the phytoplankton in the equatorial Pacific and the inter-decadal physical

forcing (in this case the El Niño/La Niña phenomena). Changes in the community

structure of phytoplankton appear to reflect changes in temperature in the equato-

rial Pacific. Larger phytoplankton cell sizes are associated with dynamic systems

where fresh nutrients are available, and smaller size classes are associated with

stratified, nutrient depleted regions. This tight coupling between the biology and

physics in the equatorial Pacific supports the idea that all the components of a

system, physical, biological and chemical, are intertwined, and that each component

of the system is intrinsically linked with another (Lovelock 1992).

Remote sensing makes it possible to collect data in dangerous or inaccessible

areas. It can also compliment costly and slow data collection in situ, ensuring that

areas or particles are not disturbed, and it offers repeat viewing and can be used

to monitor wide areas synoptically, not possible by conventional ground sampling

methods. However, the true capabilities of remote sensing can only come to fruition

when it is used in conjunction with in situ based measurements, for calibration

and validation purposes. With more optical and biological in situ measurements,

quantitative development and validation of the satellite PFT algorithms can con-

tinue. Furthermore, the synergistic benefits of using these observational techniques

in conjunction allow for well-constrained, accurate biological and geophysical pa-

rameters that can then be assimilated into mathematical models to improve their

parameterisation and our understanding needed to predict future change.
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